Age | Commit message (Collapse) | Author |
|
regmap_config.reg_stride is introduced. All extant register addresses
are a multiple of this value. Users of serial-oriented regmap busses will
typically set this to 1. Users of the MMIO regmap bus will typically set
this based on the value size of their registers, in bytes, so 4 for a
32-bit register.
Throughout the regmap code, actual register addresses are used. Wherever
the register address is used to index some array of values, the address
is divided by the stride to determine the index, or vice-versa. Error-
checking is added to all entry-points for register address data to ensure
that register addresses actually satisfy the specified stride. The MMIO
bus ensures that the specified stride is large enough for the register
size.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
regmap-stride
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regmap
Pull two more small regmap fixes from Mark Brown:
- Now we have users for it that aren't running Android it turns out
that regcache_sync_region() is much more useful to drivers if it's
exported for use by modules. Who knew?
- Make sure we don't divide by zero when doing debugfs dumps of
rbtrees, not visible up until now because everything was providing at
least some cache on startup.
* tag 'regmap-3.4-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regmap:
regmap: prevent division by zero in rbtree_show
regmap: Export regcache_sync_region()
|
|
Some bus types have very fast IO. For these, acquiring a mutex for every
IO operation is a significant overhead. Allow busses to indicate their IO
is fast, and enhance regmap to use a spinlock for those busses.
[Currently limited to native endian registers -- broonie]
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
If there are no nodes in the cache, nodes will be 0, so calculating
"registers / nodes" will cause division by zero.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Cc: stable@vger.kernel.org
|
|
The code currently passes the register offset in the current block to
regcache_lookup_reg. This works fine as long as there is only one block and with
base register of 0, but in all other cases it will look-up the default for a
wrong register, which can cause unnecessary register writes. This patch fixes
it by passing the actual register number to regcache_lookup_reg.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Cc: <stable@vger.kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull <linux/device.h> avoidance patches from Paul Gortmaker:
"Nearly every subsystem has some kind of header with a proto like:
void foo(struct device *dev);
and yet there is no reason for most of these guys to care about the
sub fields within the device struct. This allows us to significantly
reduce the scope of headers including headers. For this instance, a
reduction of about 40% is achieved by replacing the include with the
simple fact that the device is some kind of a struct.
Unlike the much larger module.h cleanup, this one is simply two
commits. One to fix the implicit <linux/device.h> users, and then one
to delete the device.h includes from the linux/include/ dir wherever
possible."
* tag 'device-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
device.h: audit and cleanup users in main include dir
device.h: cleanup users outside of linux/include (C files)
|
|
into regmap-next
|
|
For files that are actively using linux/device.h, make sure
that they call it out. This will allow us to clean up some
of the implicit uses of linux/device.h within include/*
without introducing build regressions.
Yes, this was created by "cheating" -- i.e. the headers were
cleaned up, and then the fallout was found and fixed, and then
the two commits were reordered. This ensures we don't introduce
build regressions into the git history.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
Otherwise we'll end up running with bogus register numbers.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
Most of the current users have register 0 as a volatile register or don't
have a register 0 so it's not been apparent that it's not getting synced.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
In order to allow us to support partial sync operations add minimum and
maximum register arguments to the sync operation and update the rbtree
and lzo caches to use this new information. The LZO implementation is
obviously not good, we could exit the iteration earlier, but there may
be room for more wide reaching optimisation there.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
The debugfs functions don't stub themselves out quite so well as might
be desirable so provide functions which do do this stubbing.
Reported-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
Show the register ranges we have in each rbtree node in debugfs, plus
some statistics on how big each node is and the total number of nodes.
It may also be worth collecting data on the ranges of dirty registers
to see if there's much mileage in trying to coalesce writes on sync.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
Calling regcache_exit from regcache_rbtree_init is first of all a layering
violation and secondly will cause double frees. regcache_exit will free buffers
allocated by the core, but the core will also free the same buffers when the
cacheops init callback returns an error. Thus we end up with a double free.
Fix this by not calling regcache_exit but only free those buffers which, have
been allocated in this function.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Acked-by: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
Simplify the check for registers set at their default value by avoiding
picking a default value in the case where we don't have one. Instead we
only compare the current value to the current value when we looked one
up. This fixes the case where we don't have a default stored but the value
was set to zero when that isn't the chip default.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
|
|
Ensure that when we start up in cache only mode we can store defaults of
zero, otherwise if the hardware is unavailable we won't be able to read.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
|
|
If a register isn't cached then let callers know that so they can fall
back or error handle appropriately.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
|
|
Signed-off-by: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
Move the handling of the cached rbnode into regcache_rbtree_lookup. This allows
us to remove of some duplicated code sections in regcache_rbtree_read and
regcache_rbtree_write.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Acked-by: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
Use regcache_{set,get}_val in regcache_rbtree_{set,get}_register instead of
re-implementing its functionality.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Acked-by: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
Signed-off-by: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|
|
This patch adds support for the rbtree cache compression type.
Each rbnode manages a variable length block of registers. There can be no
two nodes with overlapping blocks. Each block has a base register and a
currently top register, all the other registers, if any, lie in between these
two and in ascending order.
The reasoning behind the construction of this rbtree is simple. In the
snd_soc_rbtree_cache_init() function, we iterate over the register defaults
provided by the regcache core. For each register value that is non-zero we
insert it in the rbtree. In order to determine in which rbnode we need
to add the register, we first look if there is another register already
added that is adjacent to the one we are about to add. If that is the case
we append it in that rbnode block, otherwise we create a new rbnode
with a single register in its block and add it to the tree.
There are various optimizations across the implementation to speed up lookups
by caching the most recently used rbnode.
Signed-off-by: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
Tested-by: Lars-Peter Clausen <lars@metafoo.de>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
|