Age | Commit message (Collapse) | Author |
|
commit 220329916c72ee3d54ae7262b215a050f04a18fc upstream.
Avoid a crash caused by the scmnd->scsi_done(scmnd) call in
srp_process_rsp() being invoked with scsi_done == NULL. This can
happen if a reply is received during or after a command abort.
Reported-by: Joseph Glanville <joseph.glanville@orionvm.com.au>
Reference: http://marc.info/?l=linux-rdma&m=134314367801595
Acked-by: David Dillow <dillowda@ornl.gov>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Roland Dreier <roland@purestorage.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a769f9577232afe2c754606a83aad85127e7052a upstream.
This is a RT3070 based device.
Signed-off-by: Jeongdo Son <sohn9086@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5c263b92f828af6a8cf54041db45ceae5af8f2ab upstream.
* Use the buffer content length as opposed to the total buffer size. This can
be a real problem when using the mos7840 as a usb serial-console as all
kernel output is truncated during boot.
Signed-off-by: Mark Ferrell <mferrell@uplogix.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7724a1edbe463b06d4e7831a41149ba095b16c53 upstream.
This adds VID/PID for Kondo Kagaku Co. Ltd. Serial USB Adapter
interface:
http://www.kondo-robot.com/EN/wp/?cat=28
Tested by controlling an RCB3 board using libRCB3.
Signed-off-by: Ozan Çağlayan <ozancag@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f1b5c997e68533df1f96dcd3068a231bca495603 upstream.
The ZTE (Vodafone) K5006-Z use the following
interface layout:
00 DIAG
01 secondary
02 modem
03 networkcard
04 storage
Ignoring interface #3 which is handled by the qmi_wwan
driver.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Cc: Thomas Schäfer <tschaefer@t-online.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ee6f827df9107139e8960326e49e1376352ced4d upstream.
In this patch, we add new declarations into option.c to support the new
interfaces of Huawei Data Card devices. And at the same time, remove the
redundant declarations from option.c.
Signed-off-by: fangxiaozhi <huananhu@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d81a5d1956731c453b85c141458d4ff5d6cc5366 upstream.
A lot of Broadcom Bluetooth devices provides vendor specific interface
class and we are getting flooded by patches adding new device support.
This change will help us enable support for any other Broadcom with vendor
specific device that arrives in the future.
Only the product id changes for those devices, so this macro would be
perfect for us:
{ USB_VENDOR_AND_INTERFACE_INFO(0x0a5c, 0xff, 0x01, 0x01) }
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
Acked-by: Henrik Rydberg <rydberg@bitmath.se>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e95829f474f0db3a4d940cae1423783edd966027 upstream.
The Intel desktop boards DH77EB and DH77DF have a hardware issue that
can be worked around by BIOS. If the USB ports are switched to xHCI on
shutdown, the xHCI host will send a spurious interrupt, which will wake
the system. Some BIOS will work around this, but not all.
The bug can be avoided if the USB ports are switched back to EHCI on
shutdown. The Intel Windows driver switches the ports back to EHCI, so
change the Linux xHCI driver to do the same.
Unfortunately, we can't tell the two effected boards apart from other
working motherboards, because the vendors will change the DMI strings
for the DH77EB and DH77DF boards to their own custom names. One example
is Compulab's mini-desktop, the Intense-PC. Instead, key off the
Panther Point xHCI host PCI vendor and device ID, and switch the ports
over for all PPT xHCI hosts.
The only impact this will have on non-effected boards is to add a couple
hundred milliseconds delay on boot when the BIOS has to switch the ports
over from EHCI to xHCI.
This patch should be backported to kernels as old as 3.0, that contain
the commit 69e848c2090aebba5698a1620604c7dccb448684 "Intel xhci: Support
EHCI/xHCI port switching."
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Denis Turischev <denis@compulab.co.il>
Tested-by: Denis Turischev <denis@compulab.co.il>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 22ceac191211cf6688b1bf6ecd93c8b6bf80ed9b upstream.
The NEC/Renesas 720201 xHCI host controller does not complete its reset
within 250 milliseconds. In fact, it takes about 9 seconds to reset the
host controller, and 1 second for the host to be ready for doorbell
rings. Extend the reset and CNR polling timeout to 10 seconds each.
This patch should be backported to kernels as old as 2.6.31, that
contain the commit 66d4eadd8d067269ea8fead1a50fe87c2979a80d "USB: xhci:
BIOS handoff and HW initialization."
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Edwin Klein Mentink <e.kleinmentink@zonnet.nl>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5cb7df2b2d3afee7638b3ef23a5bcb89c6f07bd9 upstream.
Gary reports that with recent kernels, he notices more xHCI driver
warnings:
xhci_hcd 0000:03:00.0: WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?
We think his Etron xHCI host controller may have the same buggy behavior
as the Fresco Logic xHCI host. When a short transfer is received, the
host will mark the transfer as successfully completed when it should be
marking it with a short completion.
Fix this by turning on the XHCI_TRUST_TX_LENGTH quirk when the Etron
host is discovered. Note that Gary has revision 1, but if Etron fixes
this bug in future revisions, the quirk will have no effect.
This patch should be backported to kernels as old as 2.6.36, that
contain a backported version of commit
1530bbc6272d9da1e39ef8e06190d42c13a02733 "xhci: Add new short TX quirk
for Fresco Logic host."
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Gary E. Miller <gem@rellim.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7e731bc9a12339f344cddf82166b82633d99dd86 upstream.
Commit 03179fe923 introduced a kmemcheck complaint in
ext4_da_get_block_prep() because we save and restore
ei->i_da_metadata_calc_last_lblock even though it is left
uninitialized in the case where i_da_metadata_calc_len is zero.
This doesn't hurt anything, but silencing the kmemcheck complaint
makes it easier for people to find real bugs.
Addresses https://bugzilla.kernel.org/show_bug.cgi?id=45631
(which is marked as a regression).
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 81ee8fb6b52ec69eeed37fe7943446af1dccecc5 upstream.
It seems we can not update the crtc scanout address. After disabling
crtc, update to base address do not take effect after crtc being
reenable leading to at least frame being scanout from the old crtc
base address. Disabling crtc display request lead to same behavior.
So after changing the vram address if we don't keep crtc disabled
we will have the GPU trying to read some random system memory address
with some iommu this will broke the crtc engine and will lead to
broken display and iommu error message.
So to avoid this, disable crtc. For flicker less boot we will need
to avoid moving the vram start address.
This patch should also fix :
https://bugs.freedesktop.org/show_bug.cgi?id=42373
Signed-off-by: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0d8957c8a90bbb5d34fab9a304459448a5131e06 upstream.
We may only start to set up the new register values after having
confirmed that the ring is truely off. Otherwise the hw might lose the
newly written register values. This is caught later on in the init
sequence, when we check whether the register writes have stuck.
Reviewed-by: Jani Nikula <jani.nikula@intel.com>
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=50522
Tested-by: Yang Guang <guang.a.yang@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b9e0d95c041ca2d7ad297ee37c2e9cfab67a188f upstream.
When the frontend and the backend reside on the same domain, even if we
add pages to the m2p_override, these pages will never be returned by
mfn_to_pfn because the check "get_phys_to_machine(pfn) != mfn" will
always fail, so the pfn of the frontend will be returned instead
(resulting in a deadlock because the frontend pages are already locked).
INFO: task qemu-system-i38:1085 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
qemu-system-i38 D ffff8800cfc137c0 0 1085 1 0x00000000
ffff8800c47ed898 0000000000000282 ffff8800be4596b0 00000000000137c0
ffff8800c47edfd8 ffff8800c47ec010 00000000000137c0 00000000000137c0
ffff8800c47edfd8 00000000000137c0 ffffffff82213020 ffff8800be4596b0
Call Trace:
[<ffffffff81101ee0>] ? __lock_page+0x70/0x70
[<ffffffff81a0fdd9>] schedule+0x29/0x70
[<ffffffff81a0fe80>] io_schedule+0x60/0x80
[<ffffffff81101eee>] sleep_on_page+0xe/0x20
[<ffffffff81a0e1ca>] __wait_on_bit_lock+0x5a/0xc0
[<ffffffff81101ed7>] __lock_page+0x67/0x70
[<ffffffff8106f750>] ? autoremove_wake_function+0x40/0x40
[<ffffffff811867e6>] ? bio_add_page+0x36/0x40
[<ffffffff8110b692>] set_page_dirty_lock+0x52/0x60
[<ffffffff81186021>] bio_set_pages_dirty+0x51/0x70
[<ffffffff8118c6b4>] do_blockdev_direct_IO+0xb24/0xeb0
[<ffffffff811e71a0>] ? ext3_get_blocks_handle+0xe00/0xe00
[<ffffffff8118ca95>] __blockdev_direct_IO+0x55/0x60
[<ffffffff811e71a0>] ? ext3_get_blocks_handle+0xe00/0xe00
[<ffffffff811e91c8>] ext3_direct_IO+0xf8/0x390
[<ffffffff811e71a0>] ? ext3_get_blocks_handle+0xe00/0xe00
[<ffffffff81004b60>] ? xen_mc_flush+0xb0/0x1b0
[<ffffffff81104027>] generic_file_aio_read+0x737/0x780
[<ffffffff813bedeb>] ? gnttab_map_refs+0x15b/0x1e0
[<ffffffff811038f0>] ? find_get_pages+0x150/0x150
[<ffffffff8119736c>] aio_rw_vect_retry+0x7c/0x1d0
[<ffffffff811972f0>] ? lookup_ioctx+0x90/0x90
[<ffffffff81198856>] aio_run_iocb+0x66/0x1a0
[<ffffffff811998b8>] do_io_submit+0x708/0xb90
[<ffffffff81199d50>] sys_io_submit+0x10/0x20
[<ffffffff81a18d69>] system_call_fastpath+0x16/0x1b
The explanation is in the comment within the code:
We need to do this because the pages shared by the frontend
(xen-blkfront) can be already locked (lock_page, called by
do_read_cache_page); when the userspace backend tries to use them
with direct_IO, mfn_to_pfn returns the pfn of the frontend, so
do_blockdev_direct_IO is going to try to lock the same pages
again resulting in a deadlock.
A simplified call graph looks like this:
pygrub QEMU
-----------------------------------------------
do_read_cache_page io_submit
| |
lock_page ext3_direct_IO
|
bio_add_page
|
lock_page
Internally the xen-blkback uses m2p_add_override to swizzle (temporarily)
a 'struct page' to have a different MFN (so that it can point to another
guest). It also can easily find out whether another pfn corresponding
to the mfn exists in the m2p, and can set the FOREIGN bit
in the p2m, making sure that mfn_to_pfn returns the pfn of the backend.
This allows the backend to perform direct_IO on these pages, but as a
side effect prevents the frontend from using get_user_pages_fast on
them while they are being shared with the backend.
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fb6ccff667712c46b4501b920ea73a326e49626a upstream.
Commit 7572777eef78ebdee1ecb7c258c0ef94d35bad16 attempted to verify that
the total iovec from the client doesn't overflow iov_length() but it
only checked the first element. The iovec could still overflow by
starting with a small element. The obvious fix is to check all the
elements.
The overflow case doesn't look dangerous to the kernel as the copy is
limited by the length after the overflow. This fix restores the
intention of returning an error instead of successfully copying less
than the iovec represented.
I found this by code inspection. I built it but don't have a test case.
I'm cc:ing stable because the initial commit did as well.
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e85871218513c54f7dfdb6009043cb638f2fecbe upstream.
The native 31 bit and the compat behaviour for the mmap system calls differ:
In native 31 bit mode the passed in address for the mmap system call will be
unmodified passed to sys_mmap_pgoff().
In compat mode however the passed in address will be modified with
compat_ptr() which masks out the most significant bit.
The result is that in native 31 bit mode each mmap request (with MAP_FIXED)
will fail where the most significat bit is set, while in compat mode it
may succeed.
This odd behaviour was introduced with d3815898 "[S390] mmap: add missing
compat_ptr conversion to both mmap compat syscalls".
To restore a consistent behaviour accross native and compat mode this
patch functionally reverts the above mentioned commit.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
commit deee0214def5d8a32b8112f11d9c2b1696e9c0cb upstream.
We can not pass NULL libconf->conf->channel to rt61pci_config() as it
is dereferenced unconditionally in rt61pci_config_lna_gain() subroutine.
Resolves:
https://bugzilla.kernel.org/show_bug.cgi?id=44361
Reported-and-tested-by: <dolohow@gmail.com>
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6dc463511d4a690f01a9248df3b384db717e0b1c upstream.
Bamboo One's with ID of 0x6a and 0x6b were added with correct
indication of 1024 pressure levels but the Graphire packet routine
was only looking at 9 bits. Increased to 10 bits.
This bug caused these devices to roll over to zero pressure at half
way mark.
The other devices using this routine only support 256 or 512 range
and look to fix unused bits at zero.
Signed-off-by: Chris Bagwell <chris@cnpbagwell.com>
Reported-by: Tushant Mirchandani <tushantin@gmail.com>
Reviewed-by: Ping Cheng <pingc@wacom.com>
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b7ec70be01a87f2c85df3ae11046e74f9b67e323 upstream.
Found that commit d478eb44 was a bad commit.
If the link partner is transmitting codeword (even if NULL codeword),
then the RXCW.C bit will be set so check for RXCW.CW is unnecessary.
Ref: RH BZ 840642
Reported-by: Fabio Futigami <ffutigam@redhat.com>
Signed-off-by: Tushar Dave <tushar.n.dave@intel.com>
CC: Marcelo Ricardo Leitner <mleitner@redhat.com>
Tested-by: Aaron Brown <aaron.f.brown@intel.com>
Signed-off-by: Peter P Waskiewicz Jr <peter.p.waskiewicz.jr@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
partial of commit 8e8b41f9d8c8e63fc92f899ace8da91a490ac573 upstream.
As part of commit 463454b5dbd8 ("cfg80211: fix interface
combinations check"), this extra check was introduced:
if ((all_iftypes & used_iftypes) != used_iftypes)
goto cont;
However, most wireless NIC drivers did not advertise ADHOC in
wiphy.iface_combinations[i].limits[] and hence we'll get -EBUSY
when we bring up a ADHOC wlan with commands similar to:
# iwconfig wlan0 mode ad-hoc && ifconfig wlan0 up
In commit 8e8b41f9d8c8e ("cfg80211: enforce lack of interface
combinations"), the change below fixes the issue:
if (total == 1)
return 0;
But it also introduces other dependencies for stable. For example,
a full cherry pick of 8e8b41f9d8c8e would introduce additional
regressions unless we also start cherry picking driver specific
fixes like the following:
9b4760e ath5k: add possible wiphy interface combinations
1ae2fc2 mac80211_hwsim: advertise interface combinations
20c8e8d ath9k: add possible wiphy interface combinations
And the purpose of the 'if (total == 1)' is to cover the specific
use case (IBSS, adhoc) that was mentioned above. So we just pick
the specific part out from 8e8b41f9d8c8e here.
Doing so gives stable kernels a way to fix the change introduced
by 463454b5dbd8, without having to make cherry picks specific to
various NIC drivers.
Signed-off-by: Liang Li <liang.li@windriver.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1f6fc43e621167492ed4b7f3b4269c584c3d6ccc upstream.
libertas currently calls cfg80211_disconnected() when it is being
brought down. This causes an event to be allocated, but since the
wdev is already removed from the rdev by the time that the event
processing work executes, the event is never processed or freed.
http://article.gmane.org/gmane.linux.kernel.wireless.general/95666
Fix this leak, and other possible situations, by processing the event
queue when a device is being unregistered. Thanks to Johannes Berg for
the suggestion.
Signed-off-by: Daniel Drake <dsd@laptop.org>
Reviewed-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 59ee93a528b94ef4e81a08db252b0326feff171f upstream.
The irq_to_gpio function was removed from the pxa platform
in linux-3.2, and this driver has been broken since.
There is actually no in-tree user of this driver that adds
this platform device, but the driver can and does get enabled
on some platforms.
Without this patch, building ezx_defconfig results in:
drivers/mfd/ezx-pcap.c: In function 'pcap_isr_work':
drivers/mfd/ezx-pcap.c:205:2: error: implicit declaration of function 'irq_to_gpio' [-Werror=implicit-function-declaration]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com>
Cc: Samuel Ortiz <sameo@linux.intel.com>
Cc: Daniel Ribeiro <drwyrm@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3bed491c8d28329e34f8a31e3fe64d03f3a350f1 upstream.
The CONFIG_DEFAULT_MMAP_MIN_ADDR was set to 65536 in mxs_defconfig,
this caused severe breakage of userland applications since the upper
limit for ARM is 32768. By default CONFIG_DEFAULT_MMAP_MIN_ADDR is
set to 4096 and can also be changed via /proc/sys/vm/mmap_min_addr
if needed.
Quoting Russell King [1]:
"4096 is also fine for ARM too. There's not much point in having
defconfigs change it - that would just be pure noise in the config
files."
the CONFIG_DEFAULT_MMAP_MIN_ADDR can be removed from the defconfig
altogether.
This problem was introduced by commit cde7c41 (ARM: configs: add
defconfig for mach-mxs).
[1] http://marc.info/?l=linux-arm-kernel&m=134401593807820&w=2
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Wolfgang Denk <wd@denx.de>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d833352a4338dc31295ed832a30c9ccff5c7a183 upstream.
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages
look like this;
[ ..........] Lots of bad pmd messages followed by this
[ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
[ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
[ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
[ 127.186778] ------------[ cut here ]------------
[ 127.186781] kernel BUG at mm/filemap.c:134!
[ 127.186782] invalid opcode: 0000 [#1] SMP
[ 127.186783] CPU 7
[ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
[ 127.186801]
[ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
[ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002
[ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
[ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
[ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
[ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
[ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
[ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
[ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
[ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
[ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
[ 127.186821] Stack:
[ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
[ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
[ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
[ 127.186827] Call Trace:
[ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
[ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
[ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
[ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0
[ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0
[ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50
[ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130
[ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0
[ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230
[ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
[ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30
[ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80
[ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360
[ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
[ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
[ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
[ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
[ 127.186870] RSP <ffff8804144b5c08>
[ 127.186871] ---[ end trace 7cbac5d1db69f426 ]---
The bug is a race and not always easy to reproduce. To reproduce it I was
doing the following on a single socket I7-based machine with 16G of RAM.
$ hugeadm --pool-pages-max DEFAULT:13G
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
$ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
$ for i in `seq 1 9000`; do ./hugetlbfs-test; done
On my particular machine, it usually triggers within 10 minutes but
enabling debug options can change the timing such that it never hits.
Once the bug is triggered, the machine is in trouble and needs to be
rebooted. The machine will respond but processes accessing proc like "ps
aux" will hang due to the BUG_ON. shutdown will also hang and needs a
hard reset or a sysrq-b.
The basic problem is a race between page table sharing and teardown. For
the most part page table sharing depends on i_mmap_mutex. In some cases,
it is also taking the mm->page_table_lock for the PTE updates but with
shared page tables, it is the i_mmap_mutex that is more important.
Unfortunately it appears to be also insufficient. Consider the following
situation
Process A Process B
--------- ---------
hugetlb_fault shmdt
LockWrite(mmap_sem)
do_munmap
unmap_region
unmap_vmas
unmap_single_vma
unmap_hugepage_range
Lock(i_mmap_mutex)
Lock(mm->page_table_lock)
huge_pmd_unshare/unmap tables <--- (1)
Unlock(mm->page_table_lock)
Unlock(i_mmap_mutex)
huge_pte_alloc ...
Lock(i_mmap_mutex) ...
vma_prio_walk, find svma, spte ...
Lock(mm->page_table_lock) ...
share spte ...
Unlock(mm->page_table_lock) ...
Unlock(i_mmap_mutex) ...
hugetlb_no_page <--- (2)
free_pgtables
unlink_file_vma
hugetlb_free_pgd_range
remove_vma_list
In this scenario, it is possible for Process A to share page tables with
Process B that is trying to tear them down. The i_mmap_mutex on its own
does not prevent Process A walking Process B's page tables. At (1) above,
the page tables are not shared yet so it unmaps the PMDs. Process A sets
up page table sharing and at (2) faults a new entry. Process B then trips
up on it in free_pgtables.
This patch fixes the problem by adding a new function
__unmap_hugepage_range_final that is only called when the VMA is about to
be destroyed. This function clears VM_MAYSHARE during
unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA
ineligible for sharing and avoids the race. Superficially this looks like
it would then be vunerable to truncate and madvise issues but hugetlbfs
has its own truncate handlers so does not use unmap_mapping_range() and
does not support madvise(DONTNEED).
This should be treated as a -stable candidate if it is merged.
Test program is as follows. The test case was mostly written by Michal
Hocko with a few minor changes to reproduce this bug.
==== CUT HERE ====
static size_t huge_page_size = (2UL << 20);
static size_t nr_huge_page_A = 512;
static size_t nr_huge_page_B = 5632;
unsigned int get_random(unsigned int max)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return random() % max;
}
static void play(void *addr, size_t size)
{
unsigned char *start = addr,
*end = start + size,
*a;
start += get_random(size/2);
/* we could itterate on huge pages but let's give it more time. */
for (a = start; a < end; a += 4096)
*a = 0;
}
int main(int argc, char **argv)
{
key_t key = IPC_PRIVATE;
size_t sizeA = nr_huge_page_A * huge_page_size;
size_t sizeB = nr_huge_page_B * huge_page_size;
int shmidA, shmidB;
void *addrA = NULL, *addrB = NULL;
int nr_children = 300, n = 0;
if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
perror("shmget:");
return 1;
}
if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
perror("shmat");
return 1;
}
fork_child:
switch(fork()) {
case 0:
switch (n%3) {
case 0:
play(addrA, sizeA);
break;
case 1:
play(addrB, sizeB);
break;
case 2:
break;
}
break;
case -1:
perror("fork:");
break;
default:
if (++n < nr_children)
goto fork_child;
play(addrA, sizeA);
break;
}
shmdt(addrA);
shmdt(addrB);
do {
wait(NULL);
} while (--n > 0);
shmctl(shmidA, IPC_RMID, NULL);
shmctl(shmidB, IPC_RMID, NULL);
return 0;
}
[akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c9fc3f778a6a215ace14ee556067c73982b6d40f upstream.
Microcode reloading in a per-core manner is a very bad idea for both
major x86 vendors. And the thing is, we have such interface with which
we can end up with different microcode versions applied on different
cores of an otherwise homogeneous wrt (family,model,stepping) system.
So turn off the possibility of doing that per core and allow it only
system-wide.
This is a minimal fix which we'd like to see in stable too thus the
more-or-less arbitrary decision to allow system-wide reloading only on
the BSP:
$ echo 1 > /sys/devices/system/cpu/cpu0/microcode/reload
...
and disable the interface on the other cores:
$ echo 1 > /sys/devices/system/cpu/cpu23/microcode/reload
-bash: echo: write error: Invalid argument
Also, allowing the reload only from one CPU (the BSP in
that case) doesn't allow the reload procedure to degenerate
into an O(n^2) deal when triggering reloads from all
/sys/devices/system/cpu/cpuX/microcode/reload sysfs nodes
simultaneously.
A more generic fix will follow.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1340280437-7718-2-git-send-email-bp@amd64.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e826abd523913f63eb03b59746ffb16153c53dc4 upstream.
Change reload_for_cpu() in kernel/microcode_core.c to call kstrtoul()
instead of calling obsoleted simple_strtoul().
Signed-off-by: Shuah Khan <shuahkhan@gmail.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/1336324264.2897.9.camel@lorien2
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d2e7c96af1e54b507ae2a6a7dd2baf588417a7e5 upstream.
Mix in any architectural randomness in extract_buf() instead of
xfer_secondary_buf(). This allows us to mix in more architectural
randomness, and it also makes xfer_secondary_buf() faster, moving a
tiny bit of additional CPU overhead to process which is extracting the
randomness.
[ Commit description modified by tytso to remove an extended
advertisement for the RDRAND instruction. ]
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: DJ Johnston <dj.johnston@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d114a33387472555188f142ed8e98acdb8181c6d upstream.
Send the entire DMI (SMBIOS) table to the /dev/random driver to
help seed its pools.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cbc96b7594b5691d61eba2db8b2ea723645be9ca upstream.
Many platforms have per-machine instance data (serial numbers,
asset tags, etc.) squirreled away in areas that are accessed
during early system bringup. Mixing this data into the random
pools has a very high value in providing better random data,
so we should allow (and even encourage) architecture code to
call add_device_randomness() from the setup_arch() paths.
However, this limits our options for internal structure of
the random driver since random_initialize() is not called
until long after setup_arch().
Add a big fat comment to rand_initialize() spelling out
this requirement.
Suggested-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c5857ccf293968348e5eb4ebedc68074de3dcda6 upstream.
With the new interrupt sampling system, we are no longer using the
timer_rand_state structure in the irq descriptor, so we can stop
initializing it now.
[ Merged in fixes from Sedat to find some last missing references to
rand_initialize_irq() ]
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 27130f0cc3ab97560384da437e4621fc4e94f21c upstream.
wm831x devices contain a unique ID value. Feed this into the newly added
device_add_randomness() to add some per device seed data to the pool.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9dccf55f4cb011a7552a8a2749a580662f5ed8ed upstream.
The tamper evident features of the RTC include the "write counter" which
is a pseudo-random number regenerated whenever we set the RTC. Since this
value is unpredictable it should provide some useful seeding to the random
number generator.
Only do this on boot since the goal is to seed the pool rather than add
useful entropy.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 330e0a01d54c2b8606c56816f99af6ebc58ec92c upstream.
Matt Mackall stepped down as the /dev/random driver maintainer last
year, so Theodore Ts'o is taking back the /dev/random driver.
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 00ce1db1a634746040ace24c09a4e3a7949a3145 upstream.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c2557a303ab6712bb6e09447df828c557c710ac9 upstream.
Create a new function, get_random_bytes_arch() which will use the
architecture-specific hardware random number generator if it is
present. Change get_random_bytes() to not use the HW RNG, even if it
is avaiable.
The reason for this is that the hw random number generator is fast (if
it is present), but it requires that we trust the hardware
manufacturer to have not put in a back door. (For example, an
increasing counter encrypted by an AES key known to the NSA.)
It's unlikely that Intel (for example) was paid off by the US
Government to do this, but it's impossible for them to prove otherwise
--- especially since Bull Mountain is documented to use AES as a
whitener. Hence, the output of an evil, trojan-horse version of
RDRAND is statistically indistinguishable from an RDRAND implemented
to the specifications claimed by Intel. Short of using a tunnelling
electronic microscope to reverse engineer an Ivy Bridge chip and
disassembling and analyzing the CPU microcode, there's no way for us
to tell for sure.
Since users of get_random_bytes() in the Linux kernel need to be able
to support hardware systems where the HW RNG is not present, most
time-sensitive users of this interface have already created their own
cryptographic RNG interface which uses get_random_bytes() as a seed.
So it's much better to use the HW RNG to improve the existing random
number generator, by mixing in any entropy returned by the HW RNG into
/dev/random's entropy pool, but to always _use_ /dev/random's entropy
pool.
This way we get almost of the benefits of the HW RNG without any
potential liabilities. The only benefits we forgo is the
speed/performance enhancements --- and generic kernel code can't
depend on depend on get_random_bytes() having the speed of a HW RNG
anyway.
For those places that really want access to the arch-specific HW RNG,
if it is available, we provide get_random_bytes_arch().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e6d4947b12e8ad947add1032dd754803c6004824 upstream.
If the CPU supports a hardware random number generator, use it in
xfer_secondary_pool(), where it will significantly improve things and
where we can afford it.
Also, remove the use of the arch-specific rng in
add_timer_randomness(), since the call is significantly slower than
get_cycles(), and we're much better off using it in
xfer_secondary_pool() anyway.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7bf2357524408b97fec58344caf7397f8140c3fd upstream.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: David Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b04b3156a20d395a7faa8eed98698d1e17a36000 upstream.
Send the USB device's serial, product, and manufacturer strings to the
/dev/random driver to help seed its pools.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Greg KH <greg@kroah.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a2080a67abe9e314f9e9c2cc3a4a176e8a8f8793 upstream.
Add a new interface, add_device_randomness() for adding data to the
random pool that is likely to differ between two devices (or possibly
even per boot). This would be things like MAC addresses or serial
numbers, or the read-out of the RTC. This does *not* add any actual
entropy to the pool, but it initializes the pool to different values
for devices that might otherwise be identical and have very little
entropy available to them (particularly common in the embedded world).
[ Modified by tytso to mix in a timestamp, since there may be some
variability caused by the time needed to detect/configure the hardware
in question. ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 902c098a3663de3fa18639efbb71b6080f0bcd3c upstream.
The real-time Linux folks don't like add_interrupt_randomness() taking
a spinlock since it is called in the low-level interrupt routine.
This also allows us to reduce the overhead in the fast path, for the
random driver, which is the interrupt collection path.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 775f4b297b780601e61787b766f306ed3e1d23eb upstream.
We've been moving away from add_interrupt_randomness() for various
reasons: it's too expensive to do on every interrupt, and flooding the
CPU with interrupts could theoretically cause bogus floods of entropy
from a somewhat externally controllable source.
This solves both problems by limiting the actual randomness addition
to just once a second or after 64 interrupts, whicever comes first.
During that time, the interrupt cycle data is buffered up in a per-cpu
pool. Also, we make sure the the nonblocking pool used by urandom is
initialized before we start feeding the normal input pool. This
assures that /dev/urandom is returning unpredictable data as soon as
possible.
(Based on an original patch by Linus, but significantly modified by
tytso.)
Tested-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Nadia Heninger <nadiah@cs.ucsd.edu>
Reported-by: Zakir Durumeric <zakir@umich.edu>
Reported-by: J. Alex Halderman <jhalderm@umich.edu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 44e4360fa3384850d65dd36fb4e6e5f2f112709b upstream.
/proc/sys/kernel/random/boot_id can be read concurrently by userspace
processes. If two (or more) user-space processes concurrently read
boot_id when sysctl_bootid is not yet assigned, a race can occur making
boot_id differ between the reads. Because the whole point of the boot id
is to be unique across a kernel execution, fix this by protecting this
operation with a spinlock.
Given that this operation is not frequently used, hitting the spinlock
on each call should not be an issue.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2dac8e54f988ab58525505d7ef982493374433c3 upstream.
When we are initializing using arch_get_random_long() we only need to
loop enough times to touch all the bytes in the buffer; using
poolwords for that does twice the number of operations necessary on a
64-bit machine, since in the random number generator code "word" means
32 bits.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Link: http://lkml.kernel.org/r/1324589281-31931-1-git-send-email-tytso@mit.edu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3e88bdff1c65145f7ba297ccec69c774afe4c785 upstream.
If there is an architecture-specific random number generator (such as
RDRAND for Intel architectures), use it to initialize /dev/random's
entropy stores. Even in the worst case, if RDRAND is something like
AES(NSA_KEY, counter++), it won't hurt, and it will definitely help
against any other adversaries.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Link: http://lkml.kernel.org/r/1324589281-31931-1-git-send-email-tytso@mit.edu
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cf833d0b9937874b50ef2867c4e8badfd64948ce upstream.
We still don't use rdrand in /dev/random, which just seems stupid. We
accept the *cycle*counter* as a random input, but we don't accept
rdrand? That's just broken.
Sure, people can do things in user space (write to /dev/random, use
rdrand in addition to /dev/random themselves etc etc), but that
*still* seems to be a particularly stupid reason for saying "we
shouldn't bother to try to do better in /dev/random".
And even if somebody really doesn't trust rdrand as a source of random
bytes, it seems singularly stupid to trust the cycle counter *more*.
So I'd suggest the attached patch. I'm not going to even bother
arguing that we should add more bits to the entropy estimate, because
that's not the point - I don't care if /dev/random fills up slowly or
not, I think it's just stupid to not use the bits we can get from
rdrand and mix them into the strong randomness pool.
Link: http://lkml.kernel.org/r/CA%2B55aFwn59N1=m651QAyTy-1gO1noGbK18zwKDwvwqnravA84A@mail.gmail.com
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bd29e568a4cb6465f6e5ec7c1c1f3ae7d99cbec1 upstream.
If there is an architecture-specific random number generator we use it
to acquire randomness one "long" at a time. We should put these random
words into consecutive words in the result buffer - not just overwrite
the first word again and again.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 63d77173266c1791f1553e9e8ccea65dc87c4485 upstream.
Add support for architecture-specific hooks into the kernel-directed
random number generator interfaces. This patchset does not use the
architecture random number generator interfaces for the
userspace-directed interfaces (/dev/random and /dev/urandom), thus
eliminating the need to distinguish between them based on a pool
pointer.
Changes in version 3:
- Moved the hooks from extract_entropy() to get_random_bytes().
- Changes the hooks to inlines.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d6250a3f12edb3a86db9598ffeca3de8b4a219e9 upstream.
The Intel case falls through into the generic case which then changes
the values. For cases like the P6 it doesn't do the right thing so
this seems to be a screwup.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Link: http://lkml.kernel.org/n/tip-lww2uirad4skzjlmrm0vru8o@git.kernel.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dd4c9260e7f23f2e951cbfb2726e468c6d30306c upstream.
The mesh path timer needs to be canceled when
leaving the mesh as otherwise it could fire
after the interface has been removed already.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|