diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2015-11-04 09:41:05 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2015-11-04 09:41:05 -0800 |
commit | b0f85fa11aefc4f3e03306b4cd47f113bd57dcba (patch) | |
tree | 1333d36d99fde3f97210795941fc246f0ad08a75 /include/net/cfg80211.h | |
parent | ccc9d4a6d640cbde05d519edeb727881646cf71b (diff) | |
parent | f32bfb9a8ca083f8d148ea90ae5ba66f4831836e (diff) |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
Changes of note:
1) Allow to schedule ICMP packets in IPVS, from Alex Gartrell.
2) Provide FIB table ID in ipv4 route dumps just as ipv6 does, from
David Ahern.
3) Allow the user to ask for the statistics to be filtered out of
ipv4/ipv6 address netlink dumps. From Sowmini Varadhan.
4) More work to pass the network namespace context around deep into
various packet path APIs, starting with the netfilter hooks. From
Eric W Biederman.
5) Add layer 2 TX/RX checksum offloading to qeth driver, from Thomas
Richter.
6) Use usec resolution for SYN/ACK RTTs in TCP, from Yuchung Cheng.
7) Support Very High Throughput in wireless MESH code, from Bob
Copeland.
8) Allow setting the ageing_time in switchdev/rocker. From Scott
Feldman.
9) Properly autoload L2TP type modules, from Stephen Hemminger.
10) Fix and enable offload features by default in 8139cp driver, from
David Woodhouse.
11) Support both ipv4 and ipv6 sockets in a single vxlan device, from
Jiri Benc.
12) Fix CWND limiting of thin streams in TCP, from Bendik Rønning
Opstad.
13) Fix IPSEC flowcache overflows on large systems, from Steffen
Klassert.
14) Convert bridging to track VLANs using rhashtable entries rather than
a bitmap. From Nikolay Aleksandrov.
15) Make TCP listener handling completely lockless, this is a major
accomplishment. Incoming request sockets now live in the
established hash table just like any other socket too.
From Eric Dumazet.
15) Provide more bridging attributes to netlink, from Nikolay
Aleksandrov.
16) Use hash based algorithm for ipv4 multipath routing, this was very
long overdue. From Peter Nørlund.
17) Several y2038 cures, mostly avoiding timespec. From Arnd Bergmann.
18) Allow non-root execution of EBPF programs, from Alexei Starovoitov.
19) Support SO_INCOMING_CPU as setsockopt, from Eric Dumazet. This
influences the port binding selection logic used by SO_REUSEPORT.
20) Add ipv6 support to VRF, from David Ahern.
21) Add support for Mellanox Spectrum switch ASIC, from Jiri Pirko.
22) Add rtl8xxxu Realtek wireless driver, from Jes Sorensen.
23) Implement RACK loss recovery in TCP, from Yuchung Cheng.
24) Support multipath routes in MPLS, from Roopa Prabhu.
25) Fix POLLOUT notification for listening sockets in AF_UNIX, from Eric
Dumazet.
26) Add new QED Qlogic river, from Yuval Mintz, Manish Chopra, and
Sudarsana Kalluru.
27) Don't fetch timestamps on AF_UNIX sockets, from Hannes Frederic
Sowa.
28) Support ipv6 geneve tunnels, from John W Linville.
29) Add flood control support to switchdev layer, from Ido Schimmel.
30) Fix CHECKSUM_PARTIAL handling of potentially fragmented frames, from
Hannes Frederic Sowa.
31) Support persistent maps and progs in bpf, from Daniel Borkmann.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1790 commits)
sh_eth: use DMA barriers
switchdev: respect SKIP_EOPNOTSUPP flag in case there is no recursion
net: sched: kill dead code in sch_choke.c
irda: Delete an unnecessary check before the function call "irlmp_unregister_service"
net: dsa: mv88e6xxx: include DSA ports in VLANs
net: dsa: mv88e6xxx: disable SA learning for DSA and CPU ports
net/core: fix for_each_netdev_feature
vlan: Invoke driver vlan hooks only if device is present
arcnet/com20020: add LEDS_CLASS dependency
bpf, verifier: annotate verbose printer with __printf
dp83640: Only wait for timestamps for packets with timestamping enabled.
ptp: Change ptp_class to a proper bitmask
dp83640: Prune rx timestamp list before reading from it
dp83640: Delay scheduled work.
dp83640: Include hash in timestamp/packet matching
ipv6: fix tunnel error handling
net/mlx5e: Fix LSO vlan insertion
net/mlx5e: Re-eanble client vlan TX acceleration
net/mlx5e: Return error in case mlx5e_set_features() fails
net/mlx5e: Don't allow more than max supported channels
...
Diffstat (limited to 'include/net/cfg80211.h')
-rw-r--r-- | include/net/cfg80211.h | 142 |
1 files changed, 121 insertions, 21 deletions
diff --git a/include/net/cfg80211.h b/include/net/cfg80211.h index f0889a247643..2c7bdb81d30c 100644 --- a/include/net/cfg80211.h +++ b/include/net/cfg80211.h @@ -5,6 +5,7 @@ * * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH + * Copyright 2015 Intel Deutschland GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as @@ -858,6 +859,8 @@ struct station_del_parameters { /** * enum cfg80211_station_type - the type of station being modified * @CFG80211_STA_AP_CLIENT: client of an AP interface + * @CFG80211_STA_AP_CLIENT_UNASSOC: client of an AP interface that is still + * unassociated (update properties for this type of client is permitted) * @CFG80211_STA_AP_MLME_CLIENT: client of an AP interface that has * the AP MLME in the device * @CFG80211_STA_AP_STA: AP station on managed interface @@ -873,6 +876,7 @@ struct station_del_parameters { */ enum cfg80211_station_type { CFG80211_STA_AP_CLIENT, + CFG80211_STA_AP_CLIENT_UNASSOC, CFG80211_STA_AP_MLME_CLIENT, CFG80211_STA_AP_STA, CFG80211_STA_IBSS, @@ -1498,13 +1502,26 @@ struct cfg80211_match_set { }; /** + * struct cfg80211_sched_scan_plan - scan plan for scheduled scan + * + * @interval: interval between scheduled scan iterations. In seconds. + * @iterations: number of scan iterations in this scan plan. Zero means + * infinite loop. + * The last scan plan will always have this parameter set to zero, + * all other scan plans will have a finite number of iterations. + */ +struct cfg80211_sched_scan_plan { + u32 interval; + u32 iterations; +}; + +/** * struct cfg80211_sched_scan_request - scheduled scan request description * * @ssids: SSIDs to scan for (passed in the probe_reqs in active scans) * @n_ssids: number of SSIDs * @n_channels: total number of channels to scan * @scan_width: channel width for scanning - * @interval: interval between each scheduled scan cycle * @ie: optional information element(s) to add into Probe Request or %NULL * @ie_len: length of ie in octets * @flags: bit field of flags controlling operation @@ -1523,6 +1540,9 @@ struct cfg80211_match_set { * @mac_addr_mask: MAC address mask used with randomisation, bits that * are 0 in the mask should be randomised, bits that are 1 should * be taken from the @mac_addr + * @scan_plans: scan plans to be executed in this scheduled scan. Lowest + * index must be executed first. + * @n_scan_plans: number of scan plans, at least 1. * @rcu_head: RCU callback used to free the struct * @owner_nlportid: netlink portid of owner (if this should is a request * owned by a particular socket) @@ -1536,7 +1556,6 @@ struct cfg80211_sched_scan_request { int n_ssids; u32 n_channels; enum nl80211_bss_scan_width scan_width; - u32 interval; const u8 *ie; size_t ie_len; u32 flags; @@ -1544,6 +1563,8 @@ struct cfg80211_sched_scan_request { int n_match_sets; s32 min_rssi_thold; u32 delay; + struct cfg80211_sched_scan_plan *scan_plans; + int n_scan_plans; u8 mac_addr[ETH_ALEN] __aligned(2); u8 mac_addr_mask[ETH_ALEN] __aligned(2); @@ -1573,6 +1594,26 @@ enum cfg80211_signal_type { }; /** + * struct cfg80211_inform_bss - BSS inform data + * @chan: channel the frame was received on + * @scan_width: scan width that was used + * @signal: signal strength value, according to the wiphy's + * signal type + * @boottime_ns: timestamp (CLOCK_BOOTTIME) when the information was + * received; should match the time when the frame was actually + * received by the device (not just by the host, in case it was + * buffered on the device) and be accurate to about 10ms. + * If the frame isn't buffered, just passing the return value of + * ktime_get_boot_ns() is likely appropriate. + */ +struct cfg80211_inform_bss { + struct ieee80211_channel *chan; + enum nl80211_bss_scan_width scan_width; + s32 signal; + u64 boottime_ns; +}; + +/** * struct cfg80211_bss_ie_data - BSS entry IE data * @tsf: TSF contained in the frame that carried these IEs * @rcu_head: internal use, for freeing @@ -2358,6 +2399,10 @@ struct cfg80211_qos_map { * @set_power_mgmt: Configure WLAN power management. A timeout value of -1 * allows the driver to adjust the dynamic ps timeout value. * @set_cqm_rssi_config: Configure connection quality monitor RSSI threshold. + * After configuration, the driver should (soon) send an event indicating + * the current level is above/below the configured threshold; this may + * need some care when the configuration is changed (without first being + * disabled.) * @set_cqm_txe_config: Configure connection quality monitor TX error * thresholds. * @sched_scan_start: Tell the driver to start a scheduled scan. @@ -2971,12 +3016,21 @@ enum wiphy_vendor_command_flags { * @doit: callback for the operation, note that wdev is %NULL if the * flags didn't ask for a wdev and non-%NULL otherwise; the data * pointer may be %NULL if userspace provided no data at all + * @dumpit: dump callback, for transferring bigger/multiple items. The + * @storage points to cb->args[5], ie. is preserved over the multiple + * dumpit calls. + * It's recommended to not have the same sub command with both @doit and + * @dumpit, so that userspace can assume certain ones are get and others + * are used with dump requests. */ struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info; u32 flags; int (*doit)(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); + int (*dumpit)(struct wiphy *wiphy, struct wireless_dev *wdev, + struct sk_buff *skb, const void *data, int data_len, + unsigned long *storage); }; /** @@ -3044,6 +3098,12 @@ struct wiphy_vendor_command { * include fixed IEs like supported rates * @max_sched_scan_ie_len: same as max_scan_ie_len, but for scheduled * scans + * @max_sched_scan_plans: maximum number of scan plans (scan interval and number + * of iterations) for scheduled scan supported by the device. + * @max_sched_scan_plan_interval: maximum interval (in seconds) for a + * single scan plan supported by the device. + * @max_sched_scan_plan_iterations: maximum number of iterations for a single + * scan plan supported by the device. * @coverage_class: current coverage class * @fw_version: firmware version for ethtool reporting * @hw_version: hardware version for ethtool reporting @@ -3151,6 +3211,9 @@ struct wiphy { u8 max_match_sets; u16 max_scan_ie_len; u16 max_sched_scan_ie_len; + u32 max_sched_scan_plans; + u32 max_sched_scan_plan_interval; + u32 max_sched_scan_plan_iterations; int n_cipher_suites; const u32 *cipher_suites; @@ -3946,14 +4009,11 @@ void cfg80211_sched_scan_stopped(struct wiphy *wiphy); void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy); /** - * cfg80211_inform_bss_width_frame - inform cfg80211 of a received BSS frame - * + * cfg80211_inform_bss_frame_data - inform cfg80211 of a received BSS frame * @wiphy: the wiphy reporting the BSS - * @rx_channel: The channel the frame was received on - * @scan_width: width of the control channel + * @data: the BSS metadata * @mgmt: the management frame (probe response or beacon) * @len: length of the management frame - * @signal: the signal strength, type depends on the wiphy's signal_type * @gfp: context flags * * This informs cfg80211 that BSS information was found and @@ -3963,11 +4023,26 @@ void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy); * Or %NULL on error. */ struct cfg80211_bss * __must_check +cfg80211_inform_bss_frame_data(struct wiphy *wiphy, + struct cfg80211_inform_bss *data, + struct ieee80211_mgmt *mgmt, size_t len, + gfp_t gfp); + +static inline struct cfg80211_bss * __must_check cfg80211_inform_bss_width_frame(struct wiphy *wiphy, struct ieee80211_channel *rx_channel, enum nl80211_bss_scan_width scan_width, struct ieee80211_mgmt *mgmt, size_t len, - s32 signal, gfp_t gfp); + s32 signal, gfp_t gfp) +{ + struct cfg80211_inform_bss data = { + .chan = rx_channel, + .scan_width = scan_width, + .signal = signal, + }; + + return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp); +} static inline struct cfg80211_bss * __must_check cfg80211_inform_bss_frame(struct wiphy *wiphy, @@ -3975,9 +4050,13 @@ cfg80211_inform_bss_frame(struct wiphy *wiphy, struct ieee80211_mgmt *mgmt, size_t len, s32 signal, gfp_t gfp) { - return cfg80211_inform_bss_width_frame(wiphy, rx_channel, - NL80211_BSS_CHAN_WIDTH_20, - mgmt, len, signal, gfp); + struct cfg80211_inform_bss data = { + .chan = rx_channel, + .scan_width = NL80211_BSS_CHAN_WIDTH_20, + .signal = signal, + }; + + return cfg80211_inform_bss_frame_data(wiphy, &data, mgmt, len, gfp); } /** @@ -3994,11 +4073,10 @@ enum cfg80211_bss_frame_type { }; /** - * cfg80211_inform_bss_width - inform cfg80211 of a new BSS + * cfg80211_inform_bss_data - inform cfg80211 of a new BSS * * @wiphy: the wiphy reporting the BSS - * @rx_channel: The channel the frame was received on - * @scan_width: width of the control channel + * @data: the BSS metadata * @ftype: frame type (if known) * @bssid: the BSSID of the BSS * @tsf: the TSF sent by the peer in the beacon/probe response (or 0) @@ -4006,7 +4084,6 @@ enum cfg80211_bss_frame_type { * @beacon_interval: the beacon interval announced by the peer * @ie: additional IEs sent by the peer * @ielen: length of the additional IEs - * @signal: the signal strength, type depends on the wiphy's signal_type * @gfp: context flags * * This informs cfg80211 that BSS information was found and @@ -4016,13 +4093,32 @@ enum cfg80211_bss_frame_type { * Or %NULL on error. */ struct cfg80211_bss * __must_check +cfg80211_inform_bss_data(struct wiphy *wiphy, + struct cfg80211_inform_bss *data, + enum cfg80211_bss_frame_type ftype, + const u8 *bssid, u64 tsf, u16 capability, + u16 beacon_interval, const u8 *ie, size_t ielen, + gfp_t gfp); + +static inline struct cfg80211_bss * __must_check cfg80211_inform_bss_width(struct wiphy *wiphy, struct ieee80211_channel *rx_channel, enum nl80211_bss_scan_width scan_width, enum cfg80211_bss_frame_type ftype, const u8 *bssid, u64 tsf, u16 capability, u16 beacon_interval, const u8 *ie, size_t ielen, - s32 signal, gfp_t gfp); + s32 signal, gfp_t gfp) +{ + struct cfg80211_inform_bss data = { + .chan = rx_channel, + .scan_width = scan_width, + .signal = signal, + }; + + return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf, + capability, beacon_interval, ie, ielen, + gfp); +} static inline struct cfg80211_bss * __must_check cfg80211_inform_bss(struct wiphy *wiphy, @@ -4032,11 +4128,15 @@ cfg80211_inform_bss(struct wiphy *wiphy, u16 beacon_interval, const u8 *ie, size_t ielen, s32 signal, gfp_t gfp) { - return cfg80211_inform_bss_width(wiphy, rx_channel, - NL80211_BSS_CHAN_WIDTH_20, ftype, - bssid, tsf, capability, - beacon_interval, ie, ielen, signal, - gfp); + struct cfg80211_inform_bss data = { + .chan = rx_channel, + .scan_width = NL80211_BSS_CHAN_WIDTH_20, + .signal = signal, + }; + + return cfg80211_inform_bss_data(wiphy, &data, ftype, bssid, tsf, + capability, beacon_interval, ie, ielen, + gfp); } struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, |