summaryrefslogtreecommitdiff
path: root/drivers/char/random.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/char/random.c')
-rw-r--r--drivers/char/random.c114
1 files changed, 88 insertions, 26 deletions
diff --git a/drivers/char/random.c b/drivers/char/random.c
index ea4dbfa30657..9415c78d0b7c 100644
--- a/drivers/char/random.c
+++ b/drivers/char/random.c
@@ -1642,6 +1642,56 @@ void get_random_bytes(void *buf, int nbytes)
}
EXPORT_SYMBOL(get_random_bytes);
+
+/*
+ * Each time the timer fires, we expect that we got an unpredictable
+ * jump in the cycle counter. Even if the timer is running on another
+ * CPU, the timer activity will be touching the stack of the CPU that is
+ * generating entropy..
+ *
+ * Note that we don't re-arm the timer in the timer itself - we are
+ * happy to be scheduled away, since that just makes the load more
+ * complex, but we do not want the timer to keep ticking unless the
+ * entropy loop is running.
+ *
+ * So the re-arming always happens in the entropy loop itself.
+ */
+static void entropy_timer(struct timer_list *t)
+{
+ credit_entropy_bits(&input_pool, 1);
+}
+
+/*
+ * If we have an actual cycle counter, see if we can
+ * generate enough entropy with timing noise
+ */
+static void try_to_generate_entropy(void)
+{
+ struct {
+ unsigned long now;
+ struct timer_list timer;
+ } stack;
+
+ stack.now = random_get_entropy();
+
+ /* Slow counter - or none. Don't even bother */
+ if (stack.now == random_get_entropy())
+ return;
+
+ timer_setup_on_stack(&stack.timer, entropy_timer, 0);
+ while (!crng_ready()) {
+ if (!timer_pending(&stack.timer))
+ mod_timer(&stack.timer, jiffies+1);
+ mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
+ schedule();
+ stack.now = random_get_entropy();
+ }
+
+ del_timer_sync(&stack.timer);
+ destroy_timer_on_stack(&stack.timer);
+ mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
+}
+
/*
* Wait for the urandom pool to be seeded and thus guaranteed to supply
* cryptographically secure random numbers. This applies to: the /dev/urandom
@@ -1656,7 +1706,17 @@ int wait_for_random_bytes(void)
{
if (likely(crng_ready()))
return 0;
- return wait_event_interruptible(crng_init_wait, crng_ready());
+
+ do {
+ int ret;
+ ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
+ if (ret)
+ return ret > 0 ? 0 : ret;
+
+ try_to_generate_entropy();
+ } while (!crng_ready());
+
+ return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);
@@ -2188,8 +2248,8 @@ struct batched_entropy {
u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
};
unsigned int position;
+ spinlock_t batch_lock;
};
-static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
/*
* Get a random word for internal kernel use only. The quality of the random
@@ -2199,12 +2259,14 @@ static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_
* wait_for_random_bytes() should be called and return 0 at least once
* at any point prior.
*/
-static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
+static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
+ .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
+};
+
u64 get_random_u64(void)
{
u64 ret;
- bool use_lock;
- unsigned long flags = 0;
+ unsigned long flags;
struct batched_entropy *batch;
static void *previous;
@@ -2219,28 +2281,25 @@ u64 get_random_u64(void)
warn_unseeded_randomness(&previous);
- use_lock = READ_ONCE(crng_init) < 2;
- batch = &get_cpu_var(batched_entropy_u64);
- if (use_lock)
- read_lock_irqsave(&batched_entropy_reset_lock, flags);
+ batch = raw_cpu_ptr(&batched_entropy_u64);
+ spin_lock_irqsave(&batch->batch_lock, flags);
if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
extract_crng((u8 *)batch->entropy_u64);
batch->position = 0;
}
ret = batch->entropy_u64[batch->position++];
- if (use_lock)
- read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
- put_cpu_var(batched_entropy_u64);
+ spin_unlock_irqrestore(&batch->batch_lock, flags);
return ret;
}
EXPORT_SYMBOL(get_random_u64);
-static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
+static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
+ .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
+};
u32 get_random_u32(void)
{
u32 ret;
- bool use_lock;
- unsigned long flags = 0;
+ unsigned long flags;
struct batched_entropy *batch;
static void *previous;
@@ -2249,18 +2308,14 @@ u32 get_random_u32(void)
warn_unseeded_randomness(&previous);
- use_lock = READ_ONCE(crng_init) < 2;
- batch = &get_cpu_var(batched_entropy_u32);
- if (use_lock)
- read_lock_irqsave(&batched_entropy_reset_lock, flags);
+ batch = raw_cpu_ptr(&batched_entropy_u32);
+ spin_lock_irqsave(&batch->batch_lock, flags);
if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
extract_crng((u8 *)batch->entropy_u32);
batch->position = 0;
}
ret = batch->entropy_u32[batch->position++];
- if (use_lock)
- read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
- put_cpu_var(batched_entropy_u32);
+ spin_unlock_irqrestore(&batch->batch_lock, flags);
return ret;
}
EXPORT_SYMBOL(get_random_u32);
@@ -2274,12 +2329,19 @@ static void invalidate_batched_entropy(void)
int cpu;
unsigned long flags;
- write_lock_irqsave(&batched_entropy_reset_lock, flags);
for_each_possible_cpu (cpu) {
- per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
- per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
+ struct batched_entropy *batched_entropy;
+
+ batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
+ spin_lock_irqsave(&batched_entropy->batch_lock, flags);
+ batched_entropy->position = 0;
+ spin_unlock(&batched_entropy->batch_lock);
+
+ batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
+ spin_lock(&batched_entropy->batch_lock);
+ batched_entropy->position = 0;
+ spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
}
- write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
}
/**