summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAndy Lutomirski <luto@kernel.org>2015-07-15 10:29:38 -0700
committerGreg Kroah-Hartman <gregkh@linuxfoundation.org>2015-10-01 11:36:26 +0200
commit5f521316a9d5c70842744b8f3f872ab1a932711b (patch)
tree250fe9a1842fb11a385e4ca737d85df6d457289c
parent9fea301b1f49f1fd741a9e78d2a7c8906f01b4f8 (diff)
x86/nmi/64: Use DF to avoid userspace RSP confusing nested NMI detection
commit 810bc075f78ff2c221536eb3008eac6a492dba2d upstream. We have a tricky bug in the nested NMI code: if we see RSP pointing to the NMI stack on NMI entry from kernel mode, we assume that we are executing a nested NMI. This isn't quite true. A malicious userspace program can point RSP at the NMI stack, issue SYSCALL, and arrange for an NMI to happen while RSP is still pointing at the NMI stack. Fix it with a sneaky trick. Set DF in the region of code that the RSP check is intended to detect. IRET will clear DF atomically. ( Note: other than paravirt, there's little need for all this complexity. We could check RIP instead of RSP. ) Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-rw-r--r--arch/x86/kernel/entry_64.S29
1 files changed, 26 insertions, 3 deletions
diff --git a/arch/x86/kernel/entry_64.S b/arch/x86/kernel/entry_64.S
index 0f021715c7aa..6d6ab2b0bdfa 100644
--- a/arch/x86/kernel/entry_64.S
+++ b/arch/x86/kernel/entry_64.S
@@ -1868,10 +1868,25 @@ ENTRY(nmi)
/*
* Now test if the previous stack was an NMI stack. This covers
* the case where we interrupt an outer NMI after it clears
- * "NMI executing" but before IRET.
+ * "NMI executing" but before IRET. We need to be careful, though:
+ * there is one case in which RSP could point to the NMI stack
+ * despite there being no NMI active: naughty userspace controls
+ * RSP at the very beginning of the SYSCALL targets. We can
+ * pull a fast one on naughty userspace, though: we program
+ * SYSCALL to mask DF, so userspace cannot cause DF to be set
+ * if it controls the kernel's RSP. We set DF before we clear
+ * "NMI executing".
*/
lea 6*8(%rsp), %rdx
test_in_nmi rdx, 4*8(%rsp), nested_nmi, first_nmi
+
+ /* Ah, it is within the NMI stack. */
+
+ testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
+ jz first_nmi /* RSP was user controlled. */
+
+ /* This is a nested NMI. */
+
CFI_REMEMBER_STATE
nested_nmi:
@@ -1985,8 +2000,16 @@ nmi_restore:
/* Pop the extra iret frame at once */
RESTORE_ALL 6*8
- /* Clear "NMI executing". */
- movq $0, 5*8(%rsp)
+ /*
+ * Clear "NMI executing". Set DF first so that we can easily
+ * distinguish the remaining code between here and IRET from
+ * the SYSCALL entry and exit paths. On a native kernel, we
+ * could just inspect RIP, but, on paravirt kernels,
+ * INTERRUPT_RETURN can translate into a jump into a
+ * hypercall page.
+ */
+ std
+ movq $0, 5*8(%rsp) /* clear "NMI executing" */
/*
* INTERRUPT_RETURN reads the "iret" frame and exits the NMI