From 56e86c626df3dbf74c1021210636a7c5d92a49ce Mon Sep 17 00:00:00 2001 From: Dominik Sliwa Date: Tue, 30 Oct 2018 16:31:29 +0100 Subject: move to cmake Signed-off-by: Dominik Sliwa --- drivers/src/fsl_flash.c | 3432 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3432 insertions(+) create mode 100644 drivers/src/fsl_flash.c (limited to 'drivers/src/fsl_flash.c') diff --git a/drivers/src/fsl_flash.c b/drivers/src/fsl_flash.c new file mode 100644 index 0000000..f63e6c9 --- /dev/null +++ b/drivers/src/fsl_flash.c @@ -0,0 +1,3432 @@ +/* + * Copyright (c) 2015-2016, Freescale Semiconductor, Inc. + * Copyright 2016-2017 NXP + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * o Redistributions of source code must retain the above copyright notice, this list + * of conditions and the following disclaimer. + * + * o Redistributions in binary form must reproduce the above copyright notice, this + * list of conditions and the following disclaimer in the documentation and/or + * other materials provided with the distribution. + * + * o Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from this + * software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR + * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "fsl_flash.h" + +/******************************************************************************* + * Definitions + ******************************************************************************/ + +/*! + * @name Misc utility defines + * @{ + */ +/*! @brief Alignment utility. */ +#ifndef ALIGN_DOWN +#define ALIGN_DOWN(x, a) ((x) & (uint32_t)(-((int32_t)(a)))) +#endif +#ifndef ALIGN_UP +#define ALIGN_UP(x, a) (-((int32_t)((uint32_t)(-((int32_t)(x))) & (uint32_t)(-((int32_t)(a)))))) +#endif + +/*! @brief Join bytes to word utility. */ +#define B1P4(b) (((uint32_t)(b)&0xFFU) << 24) +#define B1P3(b) (((uint32_t)(b)&0xFFU) << 16) +#define B1P2(b) (((uint32_t)(b)&0xFFU) << 8) +#define B1P1(b) ((uint32_t)(b)&0xFFU) +#define B2P3(b) (((uint32_t)(b)&0xFFFFU) << 16) +#define B2P2(b) (((uint32_t)(b)&0xFFFFU) << 8) +#define B2P1(b) ((uint32_t)(b)&0xFFFFU) +#define B3P2(b) (((uint32_t)(b)&0xFFFFFFU) << 8) +#define B3P1(b) ((uint32_t)(b)&0xFFFFFFU) +#define BYTES_JOIN_TO_WORD_1_3(x, y) (B1P4(x) | B3P1(y)) +#define BYTES_JOIN_TO_WORD_2_2(x, y) (B2P3(x) | B2P1(y)) +#define BYTES_JOIN_TO_WORD_3_1(x, y) (B3P2(x) | B1P1(y)) +#define BYTES_JOIN_TO_WORD_1_1_2(x, y, z) (B1P4(x) | B1P3(y) | B2P1(z)) +#define BYTES_JOIN_TO_WORD_1_2_1(x, y, z) (B1P4(x) | B2P2(y) | B1P1(z)) +#define BYTES_JOIN_TO_WORD_2_1_1(x, y, z) (B2P3(x) | B1P2(y) | B1P1(z)) +#define BYTES_JOIN_TO_WORD_1_1_1_1(x, y, z, w) (B1P4(x) | B1P3(y) | B1P2(z) | B1P1(w)) +/*@}*/ + +/*! + * @name Secondary flash configuration + * @{ + */ +/*! @brief Indicates whether the secondary flash has its own protection register in flash module. */ +#if defined(FSL_FEATURE_FLASH_HAS_MULTIPLE_FLASH) && defined(FTFE_FPROTS_PROTS_MASK) +#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER (1) +#else +#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER (0) +#endif + +/*! @brief Indicates whether the secondary flash has its own Execute-Only access register in flash module. */ +#if defined(FSL_FEATURE_FLASH_HAS_MULTIPLE_FLASH) && defined(FTFE_FACSSS_SGSIZE_S_MASK) +#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER (1) +#else +#define FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER (0) +#endif +/*@}*/ + +/*! + * @name Flash cache ands speculation control defines + * @{ + */ +#if defined(MCM_PLACR_CFCC_MASK) || defined(MCM_CPCR2_CCBC_MASK) +#define FLASH_CACHE_IS_CONTROLLED_BY_MCM (1) +#else +#define FLASH_CACHE_IS_CONTROLLED_BY_MCM (0) +#endif +#if defined(FMC_PFB0CR_CINV_WAY_MASK) || defined(FMC_PFB01CR_CINV_WAY_MASK) +#define FLASH_CACHE_IS_CONTROLLED_BY_FMC (1) +#else +#define FLASH_CACHE_IS_CONTROLLED_BY_FMC (0) +#endif +#if defined(MCM_PLACR_DFCS_MASK) +#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM (1) +#else +#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM (0) +#endif +#if defined(MSCM_OCMDR_OCM1_MASK) || defined(MSCM_OCMDR_OCMC1_MASK) +#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM (1) +#else +#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM (0) +#endif +#if defined(FMC_PFB0CR_S_INV_MASK) || defined(FMC_PFB0CR_S_B_INV_MASK) || defined(FMC_PFB01CR_S_INV_MASK) || \ + defined(FMC_PFB01CR_S_B_INV_MASK) +#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC (1) +#else +#define FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC (0) +#endif +/*@}*/ + +/*! @brief Data flash IFR map Field*/ +#if defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE +#define DFLASH_IFR_READRESOURCE_START_ADDRESS 0x8003F8U +#else /* FSL_FEATURE_FLASH_IS_FTFL == 1 or FSL_FEATURE_FLASH_IS_FTFA = =1 */ +#define DFLASH_IFR_READRESOURCE_START_ADDRESS 0x8000F8U +#endif + +/*! + * @name Reserved FlexNVM size (For a variety of purposes) defines + * @{ + */ +#define FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED 0xFFFFFFFFU +#define FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED 0xFFFFU +/*@}*/ + +/*! + * @name Flash Program Once Field defines + * @{ + */ +#if defined(FSL_FEATURE_FLASH_IS_FTFA) && FSL_FEATURE_FLASH_IS_FTFA +/* FTFA parts(eg. K80, KL80, L5K) support both 4-bytes and 8-bytes unit size */ +#define FLASH_PROGRAM_ONCE_MIN_ID_8BYTES \ + 0x10U /* Minimum Index indcating one of Progam Once Fields which is accessed in 8-byte records */ +#define FLASH_PROGRAM_ONCE_MAX_ID_8BYTES \ + 0x13U /* Maximum Index indcating one of Progam Once Fields which is accessed in 8-byte records */ +#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 1 +#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 1 +#elif defined(FSL_FEATURE_FLASH_IS_FTFE) && FSL_FEATURE_FLASH_IS_FTFE +/* FTFE parts(eg. K65, KE18) only support 8-bytes unit size */ +#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 0 +#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 1 +#elif defined(FSL_FEATURE_FLASH_IS_FTFL) && FSL_FEATURE_FLASH_IS_FTFL +/* FTFL parts(eg. K20) only support 4-bytes unit size */ +#define FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT 1 +#define FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT 0 +#endif +/*@}*/ + +/*! + * @name Flash security status defines + * @{ + */ +#define FLASH_SECURITY_STATE_KEYEN 0x80U +#define FLASH_SECURITY_STATE_UNSECURED 0x02U +#define FLASH_NOT_SECURE 0x01U +#define FLASH_SECURE_BACKDOOR_ENABLED 0x02U +#define FLASH_SECURE_BACKDOOR_DISABLED 0x04U +/*@}*/ + +/*! + * @name Flash controller command numbers + * @{ + */ +#define FTFx_VERIFY_BLOCK 0x00U /*!< RD1BLK*/ +#define FTFx_VERIFY_SECTION 0x01U /*!< RD1SEC*/ +#define FTFx_PROGRAM_CHECK 0x02U /*!< PGMCHK*/ +#define FTFx_READ_RESOURCE 0x03U /*!< RDRSRC*/ +#define FTFx_PROGRAM_LONGWORD 0x06U /*!< PGM4*/ +#define FTFx_PROGRAM_PHRASE 0x07U /*!< PGM8*/ +#define FTFx_ERASE_BLOCK 0x08U /*!< ERSBLK*/ +#define FTFx_ERASE_SECTOR 0x09U /*!< ERSSCR*/ +#define FTFx_PROGRAM_SECTION 0x0BU /*!< PGMSEC*/ +#define FTFx_GENERATE_CRC 0x0CU /*!< CRCGEN*/ +#define FTFx_VERIFY_ALL_BLOCK 0x40U /*!< RD1ALL*/ +#define FTFx_READ_ONCE 0x41U /*!< RDONCE or RDINDEX*/ +#define FTFx_PROGRAM_ONCE 0x43U /*!< PGMONCE or PGMINDEX*/ +#define FTFx_ERASE_ALL_BLOCK 0x44U /*!< ERSALL*/ +#define FTFx_SECURITY_BY_PASS 0x45U /*!< VFYKEY*/ +#define FTFx_SWAP_CONTROL 0x46U /*!< SWAP*/ +#define FTFx_ERASE_ALL_BLOCK_UNSECURE 0x49U /*!< ERSALLU*/ +#define FTFx_VERIFY_ALL_EXECUTE_ONLY_SEGMENT 0x4AU /*!< RD1XA*/ +#define FTFx_ERASE_ALL_EXECUTE_ONLY_SEGMENT 0x4BU /*!< ERSXA*/ +#define FTFx_PROGRAM_PARTITION 0x80U /*!< PGMPART)*/ +#define FTFx_SET_FLEXRAM_FUNCTION 0x81U /*!< SETRAM*/ + /*@}*/ + +/*! + * @name Common flash register info defines + * @{ + */ +#if defined(FTFA) +#define FTFx FTFA +#define FTFx_BASE FTFA_BASE +#define FTFx_FSTAT_CCIF_MASK FTFA_FSTAT_CCIF_MASK +#define FTFx_FSTAT_RDCOLERR_MASK FTFA_FSTAT_RDCOLERR_MASK +#define FTFx_FSTAT_ACCERR_MASK FTFA_FSTAT_ACCERR_MASK +#define FTFx_FSTAT_FPVIOL_MASK FTFA_FSTAT_FPVIOL_MASK +#define FTFx_FSTAT_MGSTAT0_MASK FTFA_FSTAT_MGSTAT0_MASK +#define FTFx_FSEC_SEC_MASK FTFA_FSEC_SEC_MASK +#define FTFx_FSEC_KEYEN_MASK FTFA_FSEC_KEYEN_MASK +#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM +#define FTFx_FCNFG_RAMRDY_MASK FTFA_FCNFG_RAMRDY_MASK +#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */ +#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM +#define FTFx_FCNFG_EEERDY_MASK FTFA_FCNFG_EEERDY_MASK +#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */ +#elif defined(FTFE) +#define FTFx FTFE +#define FTFx_BASE FTFE_BASE +#define FTFx_FSTAT_CCIF_MASK FTFE_FSTAT_CCIF_MASK +#define FTFx_FSTAT_RDCOLERR_MASK FTFE_FSTAT_RDCOLERR_MASK +#define FTFx_FSTAT_ACCERR_MASK FTFE_FSTAT_ACCERR_MASK +#define FTFx_FSTAT_FPVIOL_MASK FTFE_FSTAT_FPVIOL_MASK +#define FTFx_FSTAT_MGSTAT0_MASK FTFE_FSTAT_MGSTAT0_MASK +#define FTFx_FSEC_SEC_MASK FTFE_FSEC_SEC_MASK +#define FTFx_FSEC_KEYEN_MASK FTFE_FSEC_KEYEN_MASK +#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM +#define FTFx_FCNFG_RAMRDY_MASK FTFE_FCNFG_RAMRDY_MASK +#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */ +#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM +#define FTFx_FCNFG_EEERDY_MASK FTFE_FCNFG_EEERDY_MASK +#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */ +#elif defined(FTFL) +#define FTFx FTFL +#define FTFx_BASE FTFL_BASE +#define FTFx_FSTAT_CCIF_MASK FTFL_FSTAT_CCIF_MASK +#define FTFx_FSTAT_RDCOLERR_MASK FTFL_FSTAT_RDCOLERR_MASK +#define FTFx_FSTAT_ACCERR_MASK FTFL_FSTAT_ACCERR_MASK +#define FTFx_FSTAT_FPVIOL_MASK FTFL_FSTAT_FPVIOL_MASK +#define FTFx_FSTAT_MGSTAT0_MASK FTFL_FSTAT_MGSTAT0_MASK +#define FTFx_FSEC_SEC_MASK FTFL_FSEC_SEC_MASK +#define FTFx_FSEC_KEYEN_MASK FTFL_FSEC_KEYEN_MASK +#if defined(FSL_FEATURE_FLASH_HAS_FLEX_RAM) && FSL_FEATURE_FLASH_HAS_FLEX_RAM +#define FTFx_FCNFG_RAMRDY_MASK FTFL_FCNFG_RAMRDY_MASK +#endif /* FSL_FEATURE_FLASH_HAS_FLEX_RAM */ +#if defined(FSL_FEATURE_FLASH_HAS_FLEX_NVM) && FSL_FEATURE_FLASH_HAS_FLEX_NVM +#define FTFx_FCNFG_EEERDY_MASK FTFL_FCNFG_EEERDY_MASK +#endif /* FSL_FEATURE_FLASH_HAS_FLEX_NVM */ +#else +#error "Unknown flash controller" +#endif +/*@}*/ + +/*! + * @name Common flash register access info defines + * @{ + */ +#define FTFx_FCCOB3_REG (FTFx->FCCOB3) +#define FTFx_FCCOB5_REG (FTFx->FCCOB5) +#define FTFx_FCCOB6_REG (FTFx->FCCOB6) +#define FTFx_FCCOB7_REG (FTFx->FCCOB7) + +#if defined(FTFA_FPROTH0_PROT_MASK) || defined(FTFE_FPROTH0_PROT_MASK) || defined(FTFL_FPROTH0_PROT_MASK) +#define FTFx_FPROT_HIGH_REG (FTFx->FPROTH3) +#define FTFx_FPROTH3_REG (FTFx->FPROTH3) +#define FTFx_FPROTH2_REG (FTFx->FPROTH2) +#define FTFx_FPROTH1_REG (FTFx->FPROTH1) +#define FTFx_FPROTH0_REG (FTFx->FPROTH0) +#endif + +#if defined(FTFA_FPROTL0_PROT_MASK) || defined(FTFE_FPROTL0_PROT_MASK) || defined(FTFL_FPROTL0_PROT_MASK) +#define FTFx_FPROT_LOW_REG (FTFx->FPROTL3) +#define FTFx_FPROTL3_REG (FTFx->FPROTL3) +#define FTFx_FPROTL2_REG (FTFx->FPROTL2) +#define FTFx_FPROTL1_REG (FTFx->FPROTL1) +#define FTFx_FPROTL0_REG (FTFx->FPROTL0) +#elif defined(FTFA_FPROT0_PROT_MASK) || defined(FTFE_FPROT0_PROT_MASK) || defined(FTFL_FPROT0_PROT_MASK) +#define FTFx_FPROT_LOW_REG (FTFx->FPROT3) +#define FTFx_FPROTL3_REG (FTFx->FPROT3) +#define FTFx_FPROTL2_REG (FTFx->FPROT2) +#define FTFx_FPROTL1_REG (FTFx->FPROT1) +#define FTFx_FPROTL0_REG (FTFx->FPROT0) +#endif + +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER +#define FTFx_FPROTSH_REG (FTFx->FPROTSH) +#define FTFx_FPROTSL_REG (FTFx->FPROTSL) +#endif + +#define FTFx_XACCH3_REG (FTFx->XACCH3) +#define FTFx_XACCL3_REG (FTFx->XACCL3) + +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER +#define FTFx_XACCSH_REG (FTFx->XACCSH) +#define FTFx_XACCSL_REG (FTFx->XACCSL) +#endif +/*@}*/ + +/*! + * @brief Enumeration for access segment property. + */ +enum _flash_access_segment_property +{ + kFLASH_AccessSegmentBase = 256UL, +}; + +/*! + * @brief Enumeration for flash config area. + */ +enum _flash_config_area_range +{ + kFLASH_ConfigAreaStart = 0x400U, + kFLASH_ConfigAreaEnd = 0x40FU +}; + +/*! + * @name Flash register access type defines + * @{ + */ +#define FTFx_REG8_ACCESS_TYPE volatile uint8_t * +#define FTFx_REG32_ACCESS_TYPE volatile uint32_t * +/*@}*/ + +/*! + * @brief MCM cache register access info defines. + */ +#if defined(MCM_PLACR_CFCC_MASK) +#define MCM_CACHE_CLEAR_MASK MCM_PLACR_CFCC_MASK +#define MCM_CACHE_CLEAR_SHIFT MCM_PLACR_CFCC_SHIFT +#if defined(MCM) +#define MCM0_CACHE_REG MCM->PLACR +#elif defined(MCM0) +#define MCM0_CACHE_REG MCM0->PLACR +#endif +#if defined(MCM1) +#define MCM1_CACHE_REG MCM1->PLACR +#endif +#elif defined(MCM_CPCR2_CCBC_MASK) +#define MCM_CACHE_CLEAR_MASK MCM_CPCR2_CCBC_MASK +#define MCM_CACHE_CLEAR_SHIFT MCM_CPCR2_CCBC_SHIFT +#if defined(MCM) +#define MCM0_CACHE_REG MCM->CPCR2 +#elif defined(MCM0) +#define MCM0_CACHE_REG MCM0->CPCR2 +#endif +#if defined(MCM1) +#define MCM1_CACHE_REG MCM1->CPCR2 +#endif +#endif + +/*! + * @brief MSCM cache register access info defines. + */ +#if defined(MSCM_OCMDR_OCM1_MASK) +#define MSCM_SPECULATION_DISABLE_MASK MSCM_OCMDR_OCM1_MASK +#define MSCM_SPECULATION_DISABLE_SHIFT MSCM_OCMDR_OCM1_SHIFT +#define MSCM_SPECULATION_DISABLE(x) MSCM_OCMDR_OCM1(x) +#elif defined(MSCM_OCMDR_OCMC1_MASK) +#define MSCM_SPECULATION_DISABLE_MASK MSCM_OCMDR_OCMC1_MASK +#define MSCM_SPECULATION_DISABLE_SHIFT MSCM_OCMDR_OCMC1_SHIFT +#define MSCM_SPECULATION_DISABLE(x) MSCM_OCMDR_OCMC1(x) +#endif + +/*! + * @brief MSCM prefetch speculation defines. + */ +#define MSCM_OCMDR_OCMC1_DFDS_MASK (0x10U) +#define MSCM_OCMDR_OCMC1_DFCS_MASK (0x20U) + +#define MSCM_OCMDR_OCMC1_DFDS_SHIFT (4U) +#define MSCM_OCMDR_OCMC1_DFCS_SHIFT (5U) + +/*! + * @brief Flash size encoding rule. + */ +#define FLASH_MEMORY_SIZE_ENCODING_RULE_K1_2 (0x00U) +#define FLASH_MEMORY_SIZE_ENCODING_RULE_K3 (0x01U) + +#if defined(K32W042S1M2_M0P_SERIES) || defined(K32W042S1M2_M4_SERIES) +#define FLASH_MEMORY_SIZE_ENCODING_RULE (FLASH_MEMORY_SIZE_ENCODING_RULE_K3) +#else +#define FLASH_MEMORY_SIZE_ENCODING_RULE (FLASH_MEMORY_SIZE_ENCODING_RULE_K1_2) +#endif + +/******************************************************************************* + * Prototypes + ******************************************************************************/ + +#if FLASH_DRIVER_IS_FLASH_RESIDENT +/*! @brief Copy flash_run_command() to RAM*/ +static void copy_flash_run_command(uint32_t *flashRunCommand); +/*! @brief Copy flash_cache_clear_command() to RAM*/ +static void copy_flash_common_bit_operation(uint32_t *flashCommonBitOperation); +/*! @brief Check whether flash execute-in-ram functions are ready*/ +static status_t flash_check_execute_in_ram_function_info(flash_config_t *config); +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ + +/*! @brief Internal function Flash command sequence. Called by driver APIs only*/ +static status_t flash_command_sequence(flash_config_t *config); + +/*! @brief Perform the cache clear to the flash*/ +void flash_cache_clear(flash_config_t *config); + +/*! @brief Process the cache to the flash*/ +static void flash_cache_clear_process(flash_config_t *config, flash_cache_clear_process_t process); + +/*! @brief Validates the range and alignment of the given address range.*/ +static status_t flash_check_range(flash_config_t *config, + uint32_t startAddress, + uint32_t lengthInBytes, + uint32_t alignmentBaseline); +/*! @brief Gets the right address, sector and block size of current flash type which is indicated by address.*/ +static status_t flash_get_matched_operation_info(flash_config_t *config, + uint32_t address, + flash_operation_config_t *info); +/*! @brief Validates the given user key for flash erase APIs.*/ +static status_t flash_check_user_key(uint32_t key); + +#if FLASH_SSD_IS_FLEXNVM_ENABLED +/*! @brief Updates FlexNVM memory partition status according to data flash 0 IFR.*/ +static status_t flash_update_flexnvm_memory_partition_status(flash_config_t *config); +#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */ + +#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD +/*! @brief Validates the range of the given resource address.*/ +static status_t flash_check_resource_range(uint32_t start, + uint32_t lengthInBytes, + uint32_t alignmentBaseline, + flash_read_resource_option_t option); +#endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */ + +#if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD +/*! @brief Validates the gived swap control option.*/ +static status_t flash_check_swap_control_option(flash_swap_control_option_t option); +#endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */ + +#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP +/*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/ +static status_t flash_validate_swap_indicator_address(flash_config_t *config, uint32_t address); +#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */ + +#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD +/*! @brief Validates the gived flexram function option.*/ +static inline status_t flasn_check_flexram_function_option_range(flash_flexram_function_option_t option); +#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */ + +/*! @brief Gets the flash protection information (region size, region count).*/ +static status_t flash_get_protection_info(flash_config_t *config, flash_protection_config_t *info); + +#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL +/*! @brief Gets the flash Execute-Only access information (Segment size, Segment count).*/ +static status_t flash_get_access_info(flash_config_t *config, flash_access_config_t *info); +#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */ + +#if FLASH_CACHE_IS_CONTROLLED_BY_MCM +/*! @brief Performs the cache clear to the flash by MCM.*/ +void mcm_flash_cache_clear(flash_config_t *config); +#endif /* FLASH_CACHE_IS_CONTROLLED_BY_MCM */ + +#if FLASH_CACHE_IS_CONTROLLED_BY_FMC +/*! @brief Performs the cache clear to the flash by FMC.*/ +void fmc_flash_cache_clear(void); +#endif /* FLASH_CACHE_IS_CONTROLLED_BY_FMC */ + +#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM +/*! @brief Sets the prefetch speculation buffer to the flash by MSCM.*/ +void mscm_flash_prefetch_speculation_enable(bool enable); +#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM */ + +#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC +/*! @brief Performs the prefetch speculation buffer clear to the flash by FMC.*/ +void fmc_flash_prefetch_speculation_clear(void); +#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC */ + +/******************************************************************************* + * Variables + ******************************************************************************/ + +/*! @brief Access to FTFx->FCCOB */ +volatile uint32_t *const kFCCOBx = (volatile uint32_t *)&FTFx_FCCOB3_REG; +/*! @brief Access to FTFx->FPROT */ +volatile uint32_t *const kFPROTL = (volatile uint32_t *)&FTFx_FPROT_LOW_REG; +#if defined(FTFx_FPROT_HIGH_REG) +volatile uint32_t *const kFPROTH = (volatile uint32_t *)&FTFx_FPROT_HIGH_REG; +#endif + +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER +volatile uint8_t *const kFPROTSL = (volatile uint8_t *)&FTFx_FPROTSL_REG; +volatile uint8_t *const kFPROTSH = (volatile uint8_t *)&FTFx_FPROTSH_REG; +#endif + +#if FLASH_DRIVER_IS_FLASH_RESIDENT +/*! @brief A function pointer used to point to relocated flash_run_command() */ +static void (*callFlashRunCommand)(FTFx_REG8_ACCESS_TYPE ftfx_fstat); +/*! @brief A function pointer used to point to relocated flash_common_bit_operation() */ +static void (*callFlashCommonBitOperation)(FTFx_REG32_ACCESS_TYPE base, + uint32_t bitMask, + uint32_t bitShift, + uint32_t bitValue); + +/*! + * @brief Position independent code of flash_run_command() + * + * Note1: The prototype of C function is shown as below: + * @code + * void flash_run_command(FTFx_REG8_ACCESS_TYPE ftfx_fstat) + * { + * // clear CCIF bit + * *ftfx_fstat = FTFx_FSTAT_CCIF_MASK; + * + * // Check CCIF bit of the flash status register, wait till it is set. + * // IP team indicates that this loop will always complete. + * while (!((*ftfx_fstat) & FTFx_FSTAT_CCIF_MASK)) + * { + * } + * } + * @endcode + * Note2: The binary code is generated by IAR 7.70.1 + */ +const static uint16_t s_flashRunCommandFunctionCode[] = { + 0x2180, /* MOVS R1, #128 ; 0x80 */ + 0x7001, /* STRB R1, [R0] */ + /* @4: */ + 0x7802, /* LDRB R2, [R0] */ + 0x420a, /* TST R2, R1 */ + 0xd0fc, /* BEQ.N @4 */ + 0x4770 /* BX LR */ +}; + +/*! + * @brief Position independent code of flash_common_bit_operation() + * + * Note1: The prototype of C function is shown as below: + * @code + * void flash_common_bit_operation(FTFx_REG32_ACCESS_TYPE base, uint32_t bitMask, uint32_t bitShift, uint32_t + * bitValue) + * { + * if (bitMask) + * { + * uint32_t value = (((uint32_t)(((uint32_t)(bitValue)) << bitShift)) & bitMask); + * *base = (*base & (~bitMask)) | value; + * } + * + * __ISB(); + * __DSB(); + * } + * @endcode + * Note2: The binary code is generated by IAR 7.70.1 + */ +const static uint16_t s_flashCommonBitOperationFunctionCode[] = { + 0xb510, /* PUSH {R4, LR} */ + 0x2900, /* CMP R1, #0 */ + 0xd005, /* BEQ.N @12 */ + 0x6804, /* LDR R4, [R0] */ + 0x438c, /* BICS R4, R4, R1 */ + 0x4093, /* LSLS R3, R3, R2 */ + 0x4019, /* ANDS R1, R1, R3 */ + 0x4321, /* ORRS R1, R1, R4 */ + 0x6001, /* STR R1, [R0] */ + /* @12: */ + 0xf3bf, 0x8f6f, /* ISB */ + 0xf3bf, 0x8f4f, /* DSB */ + 0xbd10 /* POP {R4, PC} */ +}; +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ + +#if (FLASH_DRIVER_IS_FLASH_RESIDENT && !FLASH_DRIVER_IS_EXPORTED) +/*! @brief A static buffer used to hold flash_run_command() */ +static uint32_t s_flashRunCommand[kFLASH_ExecuteInRamFunctionMaxSizeInWords]; +/*! @brief A static buffer used to hold flash_common_bit_operation() */ +static uint32_t s_flashCommonBitOperation[kFLASH_ExecuteInRamFunctionMaxSizeInWords]; +/*! @brief Flash execute-in-ram function information */ +static flash_execute_in_ram_function_config_t s_flashExecuteInRamFunctionInfo; +#endif + +/*! + * @brief Table of pflash sizes. + * + * The index into this table is the value of the SIM_FCFG1.PFSIZE bitfield. + * + * The values in this table have been right shifted 10 bits so that they will all fit within + * an 16-bit integer. To get the actual flash density, you must left shift the looked up value + * by 10 bits. + * + * Elements of this table have a value of 0 in cases where the PFSIZE bitfield value is + * reserved. + * + * Code to use the table: + * @code + * uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_PFSIZE_MASK) >> SIM_FCFG1_PFSIZE_SHIFT; + * flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10; + * @endcode + */ +#if (FLASH_MEMORY_SIZE_ENCODING_RULE == FLASH_MEMORY_SIZE_ENCODING_RULE_K1_2) +const uint16_t kPFlashDensities[] = { + 8, /* 0x0 - 8192, 8KB */ + 16, /* 0x1 - 16384, 16KB */ + 24, /* 0x2 - 24576, 24KB */ + 32, /* 0x3 - 32768, 32KB */ + 48, /* 0x4 - 49152, 48KB */ + 64, /* 0x5 - 65536, 64KB */ + 96, /* 0x6 - 98304, 96KB */ + 128, /* 0x7 - 131072, 128KB */ + 192, /* 0x8 - 196608, 192KB */ + 256, /* 0x9 - 262144, 256KB */ + 384, /* 0xa - 393216, 384KB */ + 512, /* 0xb - 524288, 512KB */ + 768, /* 0xc - 786432, 768KB */ + 1024, /* 0xd - 1048576, 1MB */ + 1536, /* 0xe - 1572864, 1.5MB */ + /* 2048, 0xf - 2097152, 2MB */ +}; +#elif(FLASH_MEMORY_SIZE_ENCODING_RULE == FLASH_MEMORY_SIZE_ENCODING_RULE_K3) +const uint16_t kPFlashDensities[] = { + 0, /* 0x0 - undefined */ + 0, /* 0x1 - undefined */ + 0, /* 0x2 - undefined */ + 0, /* 0x3 - undefined */ + 0, /* 0x4 - undefined */ + 0, /* 0x5 - undefined */ + 0, /* 0x6 - undefined */ + 0, /* 0x7 - undefined */ + 0, /* 0x8 - undefined */ + 0, /* 0x9 - undefined */ + 256, /* 0xa - 262144, 256KB */ + 0, /* 0xb - undefined */ + 1024, /* 0xc - 1048576, 1MB */ + 0, /* 0xd - undefined */ + 0, /* 0xe - undefined */ + 0, /* 0xf - undefined */ +}; +#endif + +/******************************************************************************* + * Code + ******************************************************************************/ + +status_t FLASH_Init(flash_config_t *config) +{ + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED + if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash) + { +/* calculate the flash density from SIM_FCFG1.PFSIZE */ +#if defined(SIM_FCFG1_CORE1_PFSIZE_MASK) + uint32_t flashDensity; + uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_CORE1_PFSIZE_MASK) >> SIM_FCFG1_CORE1_PFSIZE_SHIFT; + if (pfsize == 0xf) + { + flashDensity = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SIZE; + } + else + { + flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10; + } + config->PFlashTotalSize = flashDensity; +#else + /* Unused code to solve MISRA-C issue*/ + config->PFlashBlockBase = kPFlashDensities[0]; + config->PFlashTotalSize = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SIZE; +#endif + config->PFlashBlockBase = FSL_FEATURE_FLASH_PFLASH_1_START_ADDRESS; + config->PFlashBlockCount = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT; + config->PFlashSectorSize = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SECTOR_SIZE; + } + else +#endif /* FLASH_SSD_IS_SECONDARY_FLASH_ENABLED */ + { + uint32_t flashDensity; + +/* calculate the flash density from SIM_FCFG1.PFSIZE */ +#if defined(SIM_FCFG1_CORE0_PFSIZE_MASK) + uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_CORE0_PFSIZE_MASK) >> SIM_FCFG1_CORE0_PFSIZE_SHIFT; +#elif defined(SIM_FCFG1_PFSIZE_MASK) + uint8_t pfsize = (SIM->FCFG1 & SIM_FCFG1_PFSIZE_MASK) >> SIM_FCFG1_PFSIZE_SHIFT; +#else +#error "Unknown flash size" +#endif + /* PFSIZE=0xf means that on customer parts the IFR was not correctly programmed. + * We just use the pre-defined flash size in feature file here to support pre-production parts */ + if (pfsize == 0xf) + { + flashDensity = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_BLOCK_SIZE; + } + else + { + flashDensity = ((uint32_t)kPFlashDensities[pfsize]) << 10; + } + + /* fill out a few of the structure members */ + config->PFlashBlockBase = FSL_FEATURE_FLASH_PFLASH_START_ADDRESS; + config->PFlashTotalSize = flashDensity; + config->PFlashBlockCount = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT; + config->PFlashSectorSize = FSL_FEATURE_FLASH_PFLASH_BLOCK_SECTOR_SIZE; + } + + { +#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER + if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash) + { + config->PFlashAccessSegmentSize = kFLASH_AccessSegmentBase << FTFx->FACSSS; + config->PFlashAccessSegmentCount = FTFx->FACSNS; + } + else +#endif + { + config->PFlashAccessSegmentSize = kFLASH_AccessSegmentBase << FTFx->FACSS; + config->PFlashAccessSegmentCount = FTFx->FACSN; + } +#else + config->PFlashAccessSegmentSize = 0; + config->PFlashAccessSegmentCount = 0; +#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */ + } + + config->PFlashCallback = NULL; + +/* copy required flash commands to RAM */ +#if (FLASH_DRIVER_IS_FLASH_RESIDENT && !FLASH_DRIVER_IS_EXPORTED) + if (kStatus_FLASH_Success != flash_check_execute_in_ram_function_info(config)) + { + s_flashExecuteInRamFunctionInfo.activeFunctionCount = 0; + s_flashExecuteInRamFunctionInfo.flashRunCommand = s_flashRunCommand; + s_flashExecuteInRamFunctionInfo.flashCommonBitOperation = s_flashCommonBitOperation; + config->flashExecuteInRamFunctionInfo = &s_flashExecuteInRamFunctionInfo.activeFunctionCount; + FLASH_PrepareExecuteInRamFunctions(config); + } +#endif + + config->FlexRAMBlockBase = FSL_FEATURE_FLASH_FLEX_RAM_START_ADDRESS; + config->FlexRAMTotalSize = FSL_FEATURE_FLASH_FLEX_RAM_SIZE; + +#if FLASH_SSD_IS_FLEXNVM_ENABLED + { + status_t returnCode; + config->DFlashBlockBase = FSL_FEATURE_FLASH_FLEX_NVM_START_ADDRESS; + returnCode = flash_update_flexnvm_memory_partition_status(config); + if (returnCode != kStatus_FLASH_Success) + { + return returnCode; + } + } +#endif + + return kStatus_FLASH_Success; +} + +status_t FLASH_SetCallback(flash_config_t *config, flash_callback_t callback) +{ + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + config->PFlashCallback = callback; + + return kStatus_FLASH_Success; +} + +#if FLASH_DRIVER_IS_FLASH_RESIDENT +status_t FLASH_PrepareExecuteInRamFunctions(flash_config_t *config) +{ + flash_execute_in_ram_function_config_t *flashExecuteInRamFunctionInfo; + + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + flashExecuteInRamFunctionInfo = (flash_execute_in_ram_function_config_t *)config->flashExecuteInRamFunctionInfo; + + copy_flash_run_command(flashExecuteInRamFunctionInfo->flashRunCommand); + copy_flash_common_bit_operation(flashExecuteInRamFunctionInfo->flashCommonBitOperation); + flashExecuteInRamFunctionInfo->activeFunctionCount = kFLASH_ExecuteInRamFunctionTotalNum; + + return kStatus_FLASH_Success; +} +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ + +status_t FLASH_EraseAll(flash_config_t *config, uint32_t key) +{ + status_t returnCode; + + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* preparing passing parameter to erase all flash blocks */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_BLOCK, 0xFFFFFFU); + + /* Validate the user key */ + returnCode = flash_check_user_key(key); + if (returnCode) + { + return returnCode; + } + + flash_cache_clear_process(config, kFLASH_CacheClearProcessPre); + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + + flash_cache_clear(config); + +#if FLASH_SSD_IS_FLEXNVM_ENABLED + /* Data flash IFR will be erased by erase all command, so we need to + * update FlexNVM memory partition status synchronously */ + if (returnCode == kStatus_FLASH_Success) + { + returnCode = flash_update_flexnvm_memory_partition_status(config); + } +#endif + + return returnCode; +} + +status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t key) +{ + uint32_t sectorSize; + flash_operation_config_t flashOperationInfo; + uint32_t endAddress; /* storing end address */ + uint32_t numberOfSectors; /* number of sectors calculated by endAddress */ + status_t returnCode; + + flash_get_matched_operation_info(config, start, &flashOperationInfo); + + /* Check the supplied address range. */ + returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.sectorCmdAddressAligment); + if (returnCode) + { + return returnCode; + } + + /* Validate the user key */ + returnCode = flash_check_user_key(key); + if (returnCode) + { + return returnCode; + } + + start = flashOperationInfo.convertedAddress; + sectorSize = flashOperationInfo.activeSectorSize; + + /* calculating Flash end address */ + endAddress = start + lengthInBytes - 1; + + /* re-calculate the endAddress and align it to the start of the next sector + * which will be used in the comparison below */ + if (endAddress % sectorSize) + { + numberOfSectors = endAddress / sectorSize + 1; + endAddress = numberOfSectors * sectorSize - 1; + } + + flash_cache_clear_process(config, kFLASH_CacheClearProcessPre); + + /* the start address will increment to the next sector address + * until it reaches the endAdddress */ + while (start <= endAddress) + { + /* preparing passing parameter to erase a flash block */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_SECTOR, start); + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + + /* calling flash callback function if it is available */ + if (config->PFlashCallback) + { + config->PFlashCallback(); + } + + /* checking the success of command execution */ + if (kStatus_FLASH_Success != returnCode) + { + break; + } + else + { + /* Increment to the next sector */ + start += sectorSize; + } + } + + flash_cache_clear(config); + + return (returnCode); +} + +#if defined(FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD) && FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD +status_t FLASH_EraseAllUnsecure(flash_config_t *config, uint32_t key) +{ + status_t returnCode; + + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* Prepare passing parameter to erase all flash blocks (unsecure). */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_BLOCK_UNSECURE, 0xFFFFFFU); + + /* Validate the user key */ + returnCode = flash_check_user_key(key); + if (returnCode) + { + return returnCode; + } + + flash_cache_clear_process(config, kFLASH_CacheClearProcessPre); + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + + flash_cache_clear(config); + +#if FLASH_SSD_IS_FLEXNVM_ENABLED + /* Data flash IFR will be erased by erase all unsecure command, so we need to + * update FlexNVM memory partition status synchronously */ + if (returnCode == kStatus_FLASH_Success) + { + returnCode = flash_update_flexnvm_memory_partition_status(config); + } +#endif + + return returnCode; +} +#endif /* FSL_FEATURE_FLASH_HAS_ERASE_ALL_BLOCKS_UNSECURE_CMD */ + +status_t FLASH_EraseAllExecuteOnlySegments(flash_config_t *config, uint32_t key) +{ + status_t returnCode; + + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* preparing passing parameter to erase all execute-only segments + * 1st element for the FCCOB register */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_ERASE_ALL_EXECUTE_ONLY_SEGMENT, 0xFFFFFFU); + + /* Validate the user key */ + returnCode = flash_check_user_key(key); + if (returnCode) + { + return returnCode; + } + + flash_cache_clear_process(config, kFLASH_CacheClearProcessPre); + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + + flash_cache_clear(config); + + return returnCode; +} + +status_t FLASH_Program(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t lengthInBytes) +{ + status_t returnCode; + flash_operation_config_t flashOperationInfo; + + if (src == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + flash_get_matched_operation_info(config, start, &flashOperationInfo); + + /* Check the supplied address range. */ + returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.blockWriteUnitSize); + if (returnCode) + { + return returnCode; + } + + start = flashOperationInfo.convertedAddress; + + flash_cache_clear_process(config, kFLASH_CacheClearProcessPre); + + while (lengthInBytes > 0) + { + /* preparing passing parameter to program the flash block */ + kFCCOBx[1] = *src++; + if (4 == flashOperationInfo.blockWriteUnitSize) + { + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_LONGWORD, start); + } + else if (8 == flashOperationInfo.blockWriteUnitSize) + { + kFCCOBx[2] = *src++; + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_PHRASE, start); + } + else + { + } + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + + /* calling flash callback function if it is available */ + if (config->PFlashCallback) + { + config->PFlashCallback(); + } + + /* checking for the success of command execution */ + if (kStatus_FLASH_Success != returnCode) + { + break; + } + else + { + /* update start address for next iteration */ + start += flashOperationInfo.blockWriteUnitSize; + + /* update lengthInBytes for next iteration */ + lengthInBytes -= flashOperationInfo.blockWriteUnitSize; + } + } + + flash_cache_clear(config); + + return (returnCode); +} + +status_t FLASH_ProgramOnce(flash_config_t *config, uint32_t index, uint32_t *src, uint32_t lengthInBytes) +{ + status_t returnCode; + + if ((config == NULL) || (src == NULL)) + { + return kStatus_FLASH_InvalidArgument; + } + + /* pass paramters to FTFx */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_PROGRAM_ONCE, index, 0xFFFFU); + + kFCCOBx[1] = *src; + +/* Note: Have to seperate the first index from the rest if it equals 0 + * to avoid a pointless comparison of unsigned int to 0 compiler warning */ +#if FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT +#if FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT + if (((index == FLASH_PROGRAM_ONCE_MIN_ID_8BYTES) || + /* Range check */ + ((index >= FLASH_PROGRAM_ONCE_MIN_ID_8BYTES + 1) && (index <= FLASH_PROGRAM_ONCE_MAX_ID_8BYTES))) && + (lengthInBytes == 8)) +#endif /* FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT */ + { + kFCCOBx[2] = *(src + 1); + } +#endif /* FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT */ + + flash_cache_clear_process(config, kFLASH_CacheClearProcessPre); + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + + flash_cache_clear(config); + + return returnCode; +} + +#if defined(FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD) && FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD +status_t FLASH_ProgramSection(flash_config_t *config, uint32_t start, uint32_t *src, uint32_t lengthInBytes) +{ + status_t returnCode; + uint32_t sectorSize; + flash_operation_config_t flashOperationInfo; +#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD + bool needSwitchFlexRamMode = false; +#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */ + + if (src == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + flash_get_matched_operation_info(config, start, &flashOperationInfo); + + /* Check the supplied address range. */ + returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.sectionCmdAddressAligment); + if (returnCode) + { + return returnCode; + } + + start = flashOperationInfo.convertedAddress; + sectorSize = flashOperationInfo.activeSectorSize; + +#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD + /* Switch function of FlexRAM if needed */ + if (!(FTFx->FCNFG & FTFx_FCNFG_RAMRDY_MASK)) + { + needSwitchFlexRamMode = true; + + returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableAsRam); + if (returnCode != kStatus_FLASH_Success) + { + return kStatus_FLASH_SetFlexramAsRamError; + } + } +#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */ + + flash_cache_clear_process(config, kFLASH_CacheClearProcessPre); + + while (lengthInBytes > 0) + { + /* Make sure the write operation doesn't span two sectors */ + uint32_t endAddressOfCurrentSector = ALIGN_UP(start, sectorSize); + uint32_t lengthTobeProgrammedOfCurrentSector; + uint32_t currentOffset = 0; + + if (endAddressOfCurrentSector == start) + { + endAddressOfCurrentSector += sectorSize; + } + + if (lengthInBytes + start > endAddressOfCurrentSector) + { + lengthTobeProgrammedOfCurrentSector = endAddressOfCurrentSector - start; + } + else + { + lengthTobeProgrammedOfCurrentSector = lengthInBytes; + } + + /* Program Current Sector */ + while (lengthTobeProgrammedOfCurrentSector > 0) + { + /* Make sure the program size doesn't exceeds Acceleration RAM size */ + uint32_t programSizeOfCurrentPass; + uint32_t numberOfPhases; + + if (lengthTobeProgrammedOfCurrentSector > kFLASH_AccelerationRamSize) + { + programSizeOfCurrentPass = kFLASH_AccelerationRamSize; + } + else + { + programSizeOfCurrentPass = lengthTobeProgrammedOfCurrentSector; + } + + /* Copy data to FlexRAM */ + memcpy((void *)FSL_FEATURE_FLASH_FLEX_RAM_START_ADDRESS, src + currentOffset / 4, programSizeOfCurrentPass); + /* Set start address of the data to be programmed */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_SECTION, start + currentOffset); + /* Set program size in terms of FEATURE_FLASH_SECTION_CMD_ADDRESS_ALIGMENT */ + numberOfPhases = programSizeOfCurrentPass / flashOperationInfo.sectionCmdAddressAligment; + + kFCCOBx[1] = BYTES_JOIN_TO_WORD_2_2(numberOfPhases, 0xFFFFU); + + /* Peform command sequence */ + returnCode = flash_command_sequence(config); + + /* calling flash callback function if it is available */ + if (config->PFlashCallback) + { + config->PFlashCallback(); + } + + if (returnCode != kStatus_FLASH_Success) + { + flash_cache_clear(config); + return returnCode; + } + + lengthTobeProgrammedOfCurrentSector -= programSizeOfCurrentPass; + currentOffset += programSizeOfCurrentPass; + } + + src += currentOffset / 4; + start += currentOffset; + lengthInBytes -= currentOffset; + } + + flash_cache_clear(config); + +#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD + /* Restore function of FlexRAM if needed. */ + if (needSwitchFlexRamMode) + { + returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableForEeprom); + if (returnCode != kStatus_FLASH_Success) + { + return kStatus_FLASH_RecoverFlexramAsEepromError; + } + } +#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */ + + return returnCode; +} +#endif /* FSL_FEATURE_FLASH_HAS_PROGRAM_SECTION_CMD */ + +#if FLASH_SSD_IS_FLEXNVM_ENABLED +status_t FLASH_EepromWrite(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t lengthInBytes) +{ + status_t returnCode; + bool needSwitchFlexRamMode = false; + + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* Validates the range of the given address */ + if ((start < config->FlexRAMBlockBase) || + ((start + lengthInBytes) > (config->FlexRAMBlockBase + config->EEpromTotalSize))) + { + return kStatus_FLASH_AddressError; + } + + returnCode = kStatus_FLASH_Success; + + /* Switch function of FlexRAM if needed */ + if (!(FTFx->FCNFG & FTFx_FCNFG_EEERDY_MASK)) + { + needSwitchFlexRamMode = true; + + returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableForEeprom); + if (returnCode != kStatus_FLASH_Success) + { + return kStatus_FLASH_SetFlexramAsEepromError; + } + } + + /* Write data to FlexRAM when it is used as EEPROM emulator */ + while (lengthInBytes > 0) + { + if ((!(start & 0x3U)) && (lengthInBytes >= 4)) + { + *(uint32_t *)start = *(uint32_t *)src; + start += 4; + src += 4; + lengthInBytes -= 4; + } + else if ((!(start & 0x1U)) && (lengthInBytes >= 2)) + { + *(uint16_t *)start = *(uint16_t *)src; + start += 2; + src += 2; + lengthInBytes -= 2; + } + else + { + *(uint8_t *)start = *src; + start += 1; + src += 1; + lengthInBytes -= 1; + } + /* Wait till EEERDY bit is set */ + while (!(FTFx->FCNFG & FTFx_FCNFG_EEERDY_MASK)) + { + } + + /* Check for protection violation error */ + if (FTFx->FSTAT & FTFx_FSTAT_FPVIOL_MASK) + { + return kStatus_FLASH_ProtectionViolation; + } + } + + /* Switch function of FlexRAM if needed */ + if (needSwitchFlexRamMode) + { + returnCode = FLASH_SetFlexramFunction(config, kFLASH_FlexramFunctionOptionAvailableAsRam); + if (returnCode != kStatus_FLASH_Success) + { + return kStatus_FLASH_RecoverFlexramAsRamError; + } + } + + return returnCode; +} +#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */ + +#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD +status_t FLASH_ReadResource( + flash_config_t *config, uint32_t start, uint32_t *dst, uint32_t lengthInBytes, flash_read_resource_option_t option) +{ + status_t returnCode; + flash_operation_config_t flashOperationInfo; + + if ((config == NULL) || (dst == NULL)) + { + return kStatus_FLASH_InvalidArgument; + } + + flash_get_matched_operation_info(config, start, &flashOperationInfo); + + /* Check the supplied address range. */ + returnCode = + flash_check_resource_range(start, lengthInBytes, flashOperationInfo.resourceCmdAddressAligment, option); + if (returnCode != kStatus_FLASH_Success) + { + return returnCode; + } + + while (lengthInBytes > 0) + { + /* preparing passing parameter */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_READ_RESOURCE, start); + if (flashOperationInfo.resourceCmdAddressAligment == 4) + { + kFCCOBx[2] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU); + } + else if (flashOperationInfo.resourceCmdAddressAligment == 8) + { + kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU); + } + else + { + } + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + + if (kStatus_FLASH_Success != returnCode) + { + break; + } + + /* fetch data */ + *dst++ = kFCCOBx[1]; + if (flashOperationInfo.resourceCmdAddressAligment == 8) + { + *dst++ = kFCCOBx[2]; + } + /* update start address for next iteration */ + start += flashOperationInfo.resourceCmdAddressAligment; + /* update lengthInBytes for next iteration */ + lengthInBytes -= flashOperationInfo.resourceCmdAddressAligment; + } + + return (returnCode); +} +#endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */ + +status_t FLASH_ReadOnce(flash_config_t *config, uint32_t index, uint32_t *dst, uint32_t lengthInBytes) +{ + status_t returnCode; + + if ((config == NULL) || (dst == NULL)) + { + return kStatus_FLASH_InvalidArgument; + } + + /* pass paramters to FTFx */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_READ_ONCE, index, 0xFFFFU); + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + + if (kStatus_FLASH_Success == returnCode) + { + *dst = kFCCOBx[1]; +/* Note: Have to seperate the first index from the rest if it equals 0 + * to avoid a pointless comparison of unsigned int to 0 compiler warning */ +#if FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT +#if FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT + if (((index == FLASH_PROGRAM_ONCE_MIN_ID_8BYTES) || + /* Range check */ + ((index >= FLASH_PROGRAM_ONCE_MIN_ID_8BYTES + 1) && (index <= FLASH_PROGRAM_ONCE_MAX_ID_8BYTES))) && + (lengthInBytes == 8)) +#endif /* FLASH_PROGRAM_ONCE_IS_4BYTES_UNIT_SUPPORT */ + { + *(dst + 1) = kFCCOBx[2]; + } +#endif /* FLASH_PROGRAM_ONCE_IS_8BYTES_UNIT_SUPPORT */ + } + + return returnCode; +} + +status_t FLASH_GetSecurityState(flash_config_t *config, flash_security_state_t *state) +{ + /* store data read from flash register */ + uint8_t registerValue; + + if ((config == NULL) || (state == NULL)) + { + return kStatus_FLASH_InvalidArgument; + } + + /* Get flash security register value */ + registerValue = FTFx->FSEC; + + /* check the status of the flash security bits in the security register */ + if (FLASH_SECURITY_STATE_UNSECURED == (registerValue & FTFx_FSEC_SEC_MASK)) + { + /* Flash in unsecured state */ + *state = kFLASH_SecurityStateNotSecure; + } + else + { + /* Flash in secured state + * check for backdoor key security enable bit */ + if (FLASH_SECURITY_STATE_KEYEN == (registerValue & FTFx_FSEC_KEYEN_MASK)) + { + /* Backdoor key security enabled */ + *state = kFLASH_SecurityStateBackdoorEnabled; + } + else + { + /* Backdoor key security disabled */ + *state = kFLASH_SecurityStateBackdoorDisabled; + } + } + + return (kStatus_FLASH_Success); +} + +status_t FLASH_SecurityBypass(flash_config_t *config, const uint8_t *backdoorKey) +{ + uint8_t registerValue; /* registerValue */ + status_t returnCode; /* return code variable */ + + if ((config == NULL) || (backdoorKey == NULL)) + { + return kStatus_FLASH_InvalidArgument; + } + + /* set the default return code as kStatus_Success */ + returnCode = kStatus_FLASH_Success; + + /* Get flash security register value */ + registerValue = FTFx->FSEC; + + /* Check to see if flash is in secure state (any state other than 0x2) + * If not, then skip this since flash is not secure */ + if (0x02 != (registerValue & 0x03)) + { + /* preparing passing parameter to erase a flash block */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_SECURITY_BY_PASS, 0xFFFFFFU); + kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_1_1_1(backdoorKey[0], backdoorKey[1], backdoorKey[2], backdoorKey[3]); + kFCCOBx[2] = BYTES_JOIN_TO_WORD_1_1_1_1(backdoorKey[4], backdoorKey[5], backdoorKey[6], backdoorKey[7]); + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + } + + return (returnCode); +} + +status_t FLASH_VerifyEraseAll(flash_config_t *config, flash_margin_value_t margin) +{ + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* preparing passing parameter to verify all block command */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_VERIFY_ALL_BLOCK, margin, 0xFFFFU); + + /* calling flash command sequence function to execute the command */ + return flash_command_sequence(config); +} + +status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, flash_margin_value_t margin) +{ + /* Check arguments. */ + uint32_t blockSize; + flash_operation_config_t flashOperationInfo; + uint32_t nextBlockStartAddress; + uint32_t remainingBytes; + status_t returnCode; + + flash_get_matched_operation_info(config, start, &flashOperationInfo); + + returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.sectionCmdAddressAligment); + if (returnCode) + { + return returnCode; + } + + flash_get_matched_operation_info(config, start, &flashOperationInfo); + start = flashOperationInfo.convertedAddress; + blockSize = flashOperationInfo.activeBlockSize; + + nextBlockStartAddress = ALIGN_UP(start, blockSize); + if (nextBlockStartAddress == start) + { + nextBlockStartAddress += blockSize; + } + + remainingBytes = lengthInBytes; + + while (remainingBytes) + { + uint32_t numberOfPhrases; + uint32_t verifyLength = nextBlockStartAddress - start; + if (verifyLength > remainingBytes) + { + verifyLength = remainingBytes; + } + + numberOfPhrases = verifyLength / flashOperationInfo.sectionCmdAddressAligment; + + /* Fill in verify section command parameters. */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_VERIFY_SECTION, start); + kFCCOBx[1] = BYTES_JOIN_TO_WORD_2_1_1(numberOfPhrases, margin, 0xFFU); + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + if (returnCode) + { + return returnCode; + } + + remainingBytes -= verifyLength; + start += verifyLength; + nextBlockStartAddress += blockSize; + } + + return kStatus_FLASH_Success; +} + +status_t FLASH_VerifyProgram(flash_config_t *config, + uint32_t start, + uint32_t lengthInBytes, + const uint32_t *expectedData, + flash_margin_value_t margin, + uint32_t *failedAddress, + uint32_t *failedData) +{ + status_t returnCode; + flash_operation_config_t flashOperationInfo; + + if (expectedData == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + flash_get_matched_operation_info(config, start, &flashOperationInfo); + + returnCode = flash_check_range(config, start, lengthInBytes, flashOperationInfo.checkCmdAddressAligment); + if (returnCode) + { + return returnCode; + } + + start = flashOperationInfo.convertedAddress; + + while (lengthInBytes) + { + /* preparing passing parameter to program check the flash block */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_PROGRAM_CHECK, start); + kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(margin, 0xFFFFFFU); + kFCCOBx[2] = *expectedData; + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + + /* checking for the success of command execution */ + if (kStatus_FLASH_Success != returnCode) + { + if (failedAddress) + { + *failedAddress = start; + } + if (failedData) + { + *failedData = 0; + } + break; + } + + lengthInBytes -= flashOperationInfo.checkCmdAddressAligment; + expectedData += flashOperationInfo.checkCmdAddressAligment / sizeof(*expectedData); + start += flashOperationInfo.checkCmdAddressAligment; + } + + return (returnCode); +} + +status_t FLASH_VerifyEraseAllExecuteOnlySegments(flash_config_t *config, flash_margin_value_t margin) +{ + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* preparing passing parameter to verify erase all execute-only segments command */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_VERIFY_ALL_EXECUTE_ONLY_SEGMENT, margin, 0xFFFFU); + + /* calling flash command sequence function to execute the command */ + return flash_command_sequence(config); +} + +status_t FLASH_IsProtected(flash_config_t *config, + uint32_t start, + uint32_t lengthInBytes, + flash_protection_state_t *protection_state) +{ + uint32_t endAddress; /* end address for protection check */ + uint32_t regionCheckedCounter; /* increments each time the flash address was checked for + * protection status */ + uint32_t regionCounter; /* incrementing variable used to increment through the flash + * protection regions */ + uint32_t protectStatusCounter; /* increments each time a flash region was detected as protected */ + + uint8_t flashRegionProtectStatus[FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT]; /* array of the protection + * status for each + * protection region */ + uint32_t flashRegionAddress[FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT + + 1]; /* array of the start addresses for each flash + * protection region. Note this is REGION_COUNT+1 + * due to requiring the next start address after + * the end of flash for loop-check purposes below */ + flash_protection_config_t flashProtectionInfo; /* flash protection information */ + status_t returnCode; + + if (protection_state == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* Check the supplied address range. */ + returnCode = flash_check_range(config, start, lengthInBytes, FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE); + if (returnCode) + { + return returnCode; + } + + /* Get necessary flash protection information. */ + returnCode = flash_get_protection_info(config, &flashProtectionInfo); + if (returnCode) + { + return returnCode; + } + + /* calculating Flash end address */ + endAddress = start + lengthInBytes; + + /* populate the flashRegionAddress array with the start address of each flash region */ + regionCounter = 0; /* make sure regionCounter is initialized to 0 first */ + + /* populate up to 33rd element of array, this is the next address after end of flash array */ + while (regionCounter <= flashProtectionInfo.regionCount) + { + flashRegionAddress[regionCounter] = + flashProtectionInfo.regionBase + flashProtectionInfo.regionSize * regionCounter; + regionCounter++; + } + + /* populate flashRegionProtectStatus array with status information + * Protection status for each region is stored in the FPROT[3:0] registers + * Each bit represents one region of flash + * 4 registers * 8-bits-per-register = 32-bits (32-regions) + * The convention is: + * FPROT3[bit 0] is the first protection region (start of flash memory) + * FPROT0[bit 7] is the last protection region (end of flash memory) + * regionCounter is used to determine which FPROT[3:0] register to check for protection status + * Note: FPROT=1 means NOT protected, FPROT=0 means protected */ + regionCounter = 0; /* make sure regionCounter is initialized to 0 first */ + while (regionCounter < flashProtectionInfo.regionCount) + { +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER + if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash) + { + if (regionCounter < 8) + { + flashRegionProtectStatus[regionCounter] = (FTFx_FPROTSL_REG >> regionCounter) & (0x01u); + } + else if ((regionCounter >= 8) && (regionCounter < 16)) + { + flashRegionProtectStatus[regionCounter] = (FTFx_FPROTSH_REG >> (regionCounter - 8)) & (0x01u); + } + else + { + break; + } + } + else +#endif + { + /* Note: So far protection region count may be 16/20/24/32/64 */ + if (regionCounter < 8) + { + flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL3_REG >> regionCounter) & (0x01u); + } + else if ((regionCounter >= 8) && (regionCounter < 16)) + { + flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL2_REG >> (regionCounter - 8)) & (0x01u); + } +#if defined(FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT) && (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT > 16) +#if (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT == 20) + else if ((regionCounter >= 16) && (regionCounter < 20)) + { + flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL1_REG >> (regionCounter - 16)) & (0x01u); + } +#else + else if ((regionCounter >= 16) && (regionCounter < 24)) + { + flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL1_REG >> (regionCounter - 16)) & (0x01u); + } +#endif /* (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT == 20) */ +#endif +#if defined(FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT) && (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT > 24) + else if ((regionCounter >= 24) && (regionCounter < 32)) + { + flashRegionProtectStatus[regionCounter] = (FTFx_FPROTL0_REG >> (regionCounter - 24)) & (0x01u); + } +#endif +#if defined(FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT) && \ + (FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT == 64) + else if (regionCounter < 40) + { + flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH3_REG >> (regionCounter - 32)) & (0x01u); + } + else if (regionCounter < 48) + { + flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH2_REG >> (regionCounter - 40)) & (0x01u); + } + else if (regionCounter < 56) + { + flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH1_REG >> (regionCounter - 48)) & (0x01u); + } + else if (regionCounter < 64) + { + flashRegionProtectStatus[regionCounter] = (FTFx_FPROTH0_REG >> (regionCounter - 56)) & (0x01u); + } +#endif + else + { + break; + } + } + + regionCounter++; + } + + /* loop through the flash regions and check + * desired flash address range for protection status + * loop stops when it is detected that start has exceeded the endAddress */ + regionCounter = 0; /* make sure regionCounter is initialized to 0 first */ + regionCheckedCounter = 0; + protectStatusCounter = 0; /* make sure protectStatusCounter is initialized to 0 first */ + while (start < endAddress) + { + /* check to see if the address falls within this protection region + * Note that if the entire flash is to be checked, the last protection + * region checked would consist of the last protection start address and + * the start address following the end of flash */ + if ((start >= flashRegionAddress[regionCounter]) && (start < flashRegionAddress[regionCounter + 1])) + { + /* increment regionCheckedCounter to indicate this region was checked */ + regionCheckedCounter++; + + /* check the protection status of this region + * Note: FPROT=1 means NOT protected, FPROT=0 means protected */ + if (!flashRegionProtectStatus[regionCounter]) + { + /* increment protectStatusCounter to indicate this region is protected */ + protectStatusCounter++; + } + start += flashProtectionInfo.regionSize; /* increment to an address within the next region */ + } + regionCounter++; /* increment regionCounter to check for the next flash protection region */ + } + + /* if protectStatusCounter == 0, then no region of the desired flash region is protected */ + if (protectStatusCounter == 0) + { + *protection_state = kFLASH_ProtectionStateUnprotected; + } + /* if protectStatusCounter == regionCheckedCounter, then each region checked was protected */ + else if (protectStatusCounter == regionCheckedCounter) + { + *protection_state = kFLASH_ProtectionStateProtected; + } + /* if protectStatusCounter != regionCheckedCounter, then protection status is mixed + * In other words, some regions are protected while others are unprotected */ + else + { + *protection_state = kFLASH_ProtectionStateMixed; + } + + return (returnCode); +} + +status_t FLASH_IsExecuteOnly(flash_config_t *config, + uint32_t start, + uint32_t lengthInBytes, + flash_execute_only_access_state_t *access_state) +{ +#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL + flash_access_config_t flashAccessInfo; /* flash Execute-Only information */ +#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */ + status_t returnCode; + + if (access_state == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* Check the supplied address range. */ + returnCode = flash_check_range(config, start, lengthInBytes, FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE); + if (returnCode) + { + return returnCode; + } + +#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL + /* Get necessary flash Execute-Only information. */ + returnCode = flash_get_access_info(config, &flashAccessInfo); + if (returnCode) + { + return returnCode; + } + + { + uint32_t executeOnlySegmentCounter = 0; + + /* calculating end address */ + uint32_t endAddress = start + lengthInBytes; + + /* Aligning start address and end address */ + uint32_t alignedStartAddress = ALIGN_DOWN(start, flashAccessInfo.SegmentSize); + uint32_t alignedEndAddress = ALIGN_UP(endAddress, flashAccessInfo.SegmentSize); + + uint32_t segmentIndex = 0; + uint32_t maxSupportedExecuteOnlySegmentCount = + (alignedEndAddress - alignedStartAddress) / flashAccessInfo.SegmentSize; + + while (start < endAddress) + { + uint32_t xacc; + + segmentIndex = (start - flashAccessInfo.SegmentBase) / flashAccessInfo.SegmentSize; + +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER + if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash) + { + /* For secondary flash, The two XACCS registers allow up to 16 restricted segments of equal memory size. + */ + if (segmentIndex < 8) + { + xacc = *(const volatile uint8_t *)&FTFx_XACCSL_REG; + } + else if (segmentIndex < flashAccessInfo.SegmentCount) + { + xacc = *(const volatile uint8_t *)&FTFx_XACCSH_REG; + segmentIndex -= 8; + } + else + { + break; + } + } + else +#endif + { + /* For primary flash, The eight XACC registers allow up to 64 restricted segments of equal memory size. + */ + if (segmentIndex < 32) + { + xacc = *(const volatile uint32_t *)&FTFx_XACCL3_REG; + } + else if (segmentIndex < flashAccessInfo.SegmentCount) + { + xacc = *(const volatile uint32_t *)&FTFx_XACCH3_REG; + segmentIndex -= 32; + } + else + { + break; + } + } + + /* Determine if this address range is in a execute-only protection flash segment. */ + if ((~xacc) & (1u << segmentIndex)) + { + executeOnlySegmentCounter++; + } + + start += flashAccessInfo.SegmentSize; + } + + if (executeOnlySegmentCounter < 1u) + { + *access_state = kFLASH_AccessStateUnLimited; + } + else if (executeOnlySegmentCounter < maxSupportedExecuteOnlySegmentCount) + { + *access_state = kFLASH_AccessStateMixed; + } + else + { + *access_state = kFLASH_AccessStateExecuteOnly; + } + } +#else + *access_state = kFLASH_AccessStateUnLimited; +#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */ + + return (returnCode); +} + +status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t *value) +{ + if ((config == NULL) || (value == NULL)) + { + return kStatus_FLASH_InvalidArgument; + } + + switch (whichProperty) + { + case kFLASH_PropertyPflashSectorSize: + *value = config->PFlashSectorSize; + break; + + case kFLASH_PropertyPflashTotalSize: + *value = config->PFlashTotalSize; + break; + + case kFLASH_PropertyPflashBlockSize: + *value = config->PFlashTotalSize / FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT; + break; + + case kFLASH_PropertyPflashBlockCount: + *value = (uint32_t)config->PFlashBlockCount; + break; + + case kFLASH_PropertyPflashBlockBaseAddr: + *value = config->PFlashBlockBase; + break; + + case kFLASH_PropertyPflashFacSupport: +#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) + *value = FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL; +#else + *value = 0; +#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */ + break; + + case kFLASH_PropertyPflashAccessSegmentSize: + *value = config->PFlashAccessSegmentSize; + break; + + case kFLASH_PropertyPflashAccessSegmentCount: + *value = config->PFlashAccessSegmentCount; + break; + + case kFLASH_PropertyFlexRamBlockBaseAddr: + *value = config->FlexRAMBlockBase; + break; + + case kFLASH_PropertyFlexRamTotalSize: + *value = config->FlexRAMTotalSize; + break; + +#if FLASH_SSD_IS_FLEXNVM_ENABLED + case kFLASH_PropertyDflashSectorSize: + *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SECTOR_SIZE; + break; + case kFLASH_PropertyDflashTotalSize: + *value = config->DFlashTotalSize; + break; + case kFLASH_PropertyDflashBlockSize: + *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SIZE; + break; + case kFLASH_PropertyDflashBlockCount: + *value = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_COUNT; + break; + case kFLASH_PropertyDflashBlockBaseAddr: + *value = config->DFlashBlockBase; + break; + case kFLASH_PropertyEepromTotalSize: + *value = config->EEpromTotalSize; + break; +#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */ + + default: /* catch inputs that are not recognized */ + return kStatus_FLASH_UnknownProperty; + } + + return kStatus_FLASH_Success; +} + +status_t FLASH_SetProperty(flash_config_t *config, flash_property_tag_t whichProperty, uint32_t value) +{ + status_t status = kStatus_FLASH_Success; + + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + switch (whichProperty) + { +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED + case kFLASH_PropertyFlashMemoryIndex: + if ((value != (uint32_t)kFLASH_MemoryIndexPrimaryFlash) && + (value != (uint32_t)kFLASH_MemoryIndexSecondaryFlash)) + { + return kStatus_FLASH_InvalidPropertyValue; + } + config->FlashMemoryIndex = (uint8_t)value; + break; +#endif /* FLASH_SSD_IS_SECONDARY_FLASH_ENABLED */ + + case kFLASH_PropertyFlashCacheControllerIndex: + if ((value != (uint32_t)kFLASH_CacheControllerIndexForCore0) && + (value != (uint32_t)kFLASH_CacheControllerIndexForCore1)) + { + return kStatus_FLASH_InvalidPropertyValue; + } + config->FlashCacheControllerIndex = (uint8_t)value; + break; + + case kFLASH_PropertyPflashSectorSize: + case kFLASH_PropertyPflashTotalSize: + case kFLASH_PropertyPflashBlockSize: + case kFLASH_PropertyPflashBlockCount: + case kFLASH_PropertyPflashBlockBaseAddr: + case kFLASH_PropertyPflashFacSupport: + case kFLASH_PropertyPflashAccessSegmentSize: + case kFLASH_PropertyPflashAccessSegmentCount: + case kFLASH_PropertyFlexRamBlockBaseAddr: + case kFLASH_PropertyFlexRamTotalSize: +#if FLASH_SSD_IS_FLEXNVM_ENABLED + case kFLASH_PropertyDflashSectorSize: + case kFLASH_PropertyDflashTotalSize: + case kFLASH_PropertyDflashBlockSize: + case kFLASH_PropertyDflashBlockCount: + case kFLASH_PropertyDflashBlockBaseAddr: + case kFLASH_PropertyEepromTotalSize: +#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */ + status = kStatus_FLASH_ReadOnlyProperty; + break; + default: /* catch inputs that are not recognized */ + status = kStatus_FLASH_UnknownProperty; + break; + } + + return status; +} + +#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD +status_t FLASH_SetFlexramFunction(flash_config_t *config, flash_flexram_function_option_t option) +{ + status_t status; + + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + status = flasn_check_flexram_function_option_range(option); + if (status != kStatus_FLASH_Success) + { + return status; + } + + /* preparing passing parameter to verify all block command */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_1_2(FTFx_SET_FLEXRAM_FUNCTION, option, 0xFFFFU); + + /* calling flash command sequence function to execute the command */ + return flash_command_sequence(config); +} +#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */ + +#if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD +status_t FLASH_SwapControl(flash_config_t *config, + uint32_t address, + flash_swap_control_option_t option, + flash_swap_state_config_t *returnInfo) +{ + status_t returnCode; + + if ((config == NULL) || (returnInfo == NULL)) + { + return kStatus_FLASH_InvalidArgument; + } + + if (address & (FSL_FEATURE_FLASH_PFLASH_SWAP_CONTROL_CMD_ADDRESS_ALIGMENT - 1)) + { + return kStatus_FLASH_AlignmentError; + } + + /* Make sure address provided is in the lower half of Program flash but not in the Flash Configuration Field */ + if ((address >= (config->PFlashTotalSize / 2)) || + ((address >= kFLASH_ConfigAreaStart) && (address <= kFLASH_ConfigAreaEnd))) + { + return kStatus_FLASH_SwapIndicatorAddressError; + } + + /* Check the option. */ + returnCode = flash_check_swap_control_option(option); + if (returnCode) + { + return returnCode; + } + + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_3(FTFx_SWAP_CONTROL, address); + kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_3(option, 0xFFFFFFU); + + returnCode = flash_command_sequence(config); + + returnInfo->flashSwapState = (flash_swap_state_t)FTFx_FCCOB5_REG; + returnInfo->currentSwapBlockStatus = (flash_swap_block_status_t)FTFx_FCCOB6_REG; + returnInfo->nextSwapBlockStatus = (flash_swap_block_status_t)FTFx_FCCOB7_REG; + + return returnCode; +} +#endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */ + +#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP +status_t FLASH_Swap(flash_config_t *config, uint32_t address, flash_swap_function_option_t option) +{ + flash_swap_state_config_t returnInfo; + status_t returnCode; + + memset(&returnInfo, 0xFFU, sizeof(returnInfo)); + + do + { + returnCode = FLASH_SwapControl(config, address, kFLASH_SwapControlOptionReportStatus, &returnInfo); + if (returnCode != kStatus_FLASH_Success) + { + return returnCode; + } + + if (kFLASH_SwapFunctionOptionDisable == option) + { + if (returnInfo.flashSwapState == kFLASH_SwapStateDisabled) + { + return kStatus_FLASH_Success; + } + else if (returnInfo.flashSwapState == kFLASH_SwapStateUninitialized) + { + /* The swap system changed to the DISABLED state with Program flash block 0 + * located at relative flash address 0x0_0000 */ + returnCode = FLASH_SwapControl(config, address, kFLASH_SwapControlOptionDisableSystem, &returnInfo); + } + else + { + /* Swap disable should be requested only when swap system is in the uninitialized state */ + return kStatus_FLASH_SwapSystemNotInUninitialized; + } + } + else + { + /* When first swap: the initial swap state is Uninitialized, flash swap inidicator address is unset, + * the swap procedure should be Uninitialized -> Update-Erased -> Complete. + * After the first swap has been completed, the flash swap inidicator address cannot be modified + * unless EraseAllBlocks command is issued, the swap procedure is changed to Update -> Update-Erased -> + * Complete. */ + switch (returnInfo.flashSwapState) + { + case kFLASH_SwapStateUninitialized: + /* If current swap mode is Uninitialized, Initialize Swap to Initialized/READY state. */ + returnCode = + FLASH_SwapControl(config, address, kFLASH_SwapControlOptionIntializeSystem, &returnInfo); + break; + case kFLASH_SwapStateReady: + /* Validate whether the address provided to the swap system is matched to + * swap indicator address in the IFR */ + returnCode = flash_validate_swap_indicator_address(config, address); + if (returnCode == kStatus_FLASH_Success) + { + /* If current swap mode is Initialized/Ready, Initialize Swap to UPDATE state. */ + returnCode = + FLASH_SwapControl(config, address, kFLASH_SwapControlOptionSetInUpdateState, &returnInfo); + } + break; + case kFLASH_SwapStateUpdate: + /* If current swap mode is Update, Erase indicator sector in non active block + * to proceed swap system to update-erased state */ + returnCode = FLASH_Erase(config, address + (config->PFlashTotalSize >> 1), + FSL_FEATURE_FLASH_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT, kFLASH_ApiEraseKey); + break; + case kFLASH_SwapStateUpdateErased: + /* If current swap mode is Update or Update-Erased, progress Swap to COMPLETE State */ + returnCode = + FLASH_SwapControl(config, address, kFLASH_SwapControlOptionSetInCompleteState, &returnInfo); + break; + case kFLASH_SwapStateComplete: + break; + case kFLASH_SwapStateDisabled: + /* When swap system is in disabled state, We need to clear swap system back to uninitialized + * by issuing EraseAllBlocks command */ + returnCode = kStatus_FLASH_SwapSystemNotInUninitialized; + break; + default: + returnCode = kStatus_FLASH_InvalidArgument; + break; + } + } + if (returnCode != kStatus_FLASH_Success) + { + break; + } + } while (!((kFLASH_SwapStateComplete == returnInfo.flashSwapState) && (kFLASH_SwapFunctionOptionEnable == option))); + + return returnCode; +} +#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */ + +#if defined(FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD) && FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD +status_t FLASH_ProgramPartition(flash_config_t *config, + flash_partition_flexram_load_option_t option, + uint32_t eepromDataSizeCode, + uint32_t flexnvmPartitionCode) +{ + status_t returnCode; + + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* eepromDataSizeCode[7:6], flexnvmPartitionCode[7:4] should be all 1'b0 + * or it will cause access error. */ + /* eepromDataSizeCode &= 0x3FU; */ + /* flexnvmPartitionCode &= 0x0FU; */ + + /* preparing passing parameter to program the flash block */ + kFCCOBx[0] = BYTES_JOIN_TO_WORD_1_2_1(FTFx_PROGRAM_PARTITION, 0xFFFFU, option); + kFCCOBx[1] = BYTES_JOIN_TO_WORD_1_1_2(eepromDataSizeCode, flexnvmPartitionCode, 0xFFFFU); + + flash_cache_clear_process(config, kFLASH_CacheClearProcessPre); + + /* calling flash command sequence function to execute the command */ + returnCode = flash_command_sequence(config); + + flash_cache_clear(config); + +#if FLASH_SSD_IS_FLEXNVM_ENABLED + /* Data flash IFR will be updated by program partition command during reset sequence, + * so we just set reserved values for partitioned FlexNVM size here */ + config->EEpromTotalSize = FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED; + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif + + return (returnCode); +} +#endif /* FSL_FEATURE_FLASH_HAS_PROGRAM_PARTITION_CMD */ + +status_t FLASH_PflashSetProtection(flash_config_t *config, pflash_protection_status_t *protectStatus) +{ + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER + if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash) + { + *kFPROTSL = protectStatus->valueLow32b.prots16b.protsl; + if (protectStatus->valueLow32b.prots16b.protsl != *kFPROTSL) + { + return kStatus_FLASH_CommandFailure; + } + + *kFPROTSH = protectStatus->valueLow32b.prots16b.protsh; + if (protectStatus->valueLow32b.prots16b.protsh != *kFPROTSH) + { + return kStatus_FLASH_CommandFailure; + } + } + else +#endif + { + *kFPROTL = protectStatus->valueLow32b.protl32b; + if (protectStatus->valueLow32b.protl32b != *kFPROTL) + { + return kStatus_FLASH_CommandFailure; + } + +#if defined(FTFx_FPROT_HIGH_REG) + *kFPROTH = protectStatus->valueHigh32b.proth32b; + if (protectStatus->valueHigh32b.proth32b != *kFPROTH) + { + return kStatus_FLASH_CommandFailure; + } +#endif + } + + return kStatus_FLASH_Success; +} + +status_t FLASH_PflashGetProtection(flash_config_t *config, pflash_protection_status_t *protectStatus) +{ + if ((config == NULL) || (protectStatus == NULL)) + { + return kStatus_FLASH_InvalidArgument; + } + +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER + if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash) + { + protectStatus->valueLow32b.prots16b.protsl = *kFPROTSL; + protectStatus->valueLow32b.prots16b.protsh = *kFPROTSH; + } + else +#endif + { + protectStatus->valueLow32b.protl32b = *kFPROTL; +#if defined(FTFx_FPROT_HIGH_REG) + protectStatus->valueHigh32b.proth32b = *kFPROTH; +#endif + } + + return kStatus_FLASH_Success; +} + +#if FLASH_SSD_IS_FLEXNVM_ENABLED +status_t FLASH_DflashSetProtection(flash_config_t *config, uint8_t protectStatus) +{ + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + if ((config->DFlashTotalSize == 0) || (config->DFlashTotalSize == FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED)) + { + return kStatus_FLASH_CommandNotSupported; + } + + FTFx->FDPROT = protectStatus; + + if (FTFx->FDPROT != protectStatus) + { + return kStatus_FLASH_CommandFailure; + } + + return kStatus_FLASH_Success; +} +#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */ + +#if FLASH_SSD_IS_FLEXNVM_ENABLED +status_t FLASH_DflashGetProtection(flash_config_t *config, uint8_t *protectStatus) +{ + if ((config == NULL) || (protectStatus == NULL)) + { + return kStatus_FLASH_InvalidArgument; + } + + if ((config->DFlashTotalSize == 0) || (config->DFlashTotalSize == FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED)) + { + return kStatus_FLASH_CommandNotSupported; + } + + *protectStatus = FTFx->FDPROT; + + return kStatus_FLASH_Success; +} +#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */ + +#if FLASH_SSD_IS_FLEXNVM_ENABLED +status_t FLASH_EepromSetProtection(flash_config_t *config, uint8_t protectStatus) +{ + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + if ((config->EEpromTotalSize == 0) || (config->EEpromTotalSize == FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED)) + { + return kStatus_FLASH_CommandNotSupported; + } + + FTFx->FEPROT = protectStatus; + + if (FTFx->FEPROT != protectStatus) + { + return kStatus_FLASH_CommandFailure; + } + + return kStatus_FLASH_Success; +} +#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */ + +#if FLASH_SSD_IS_FLEXNVM_ENABLED +status_t FLASH_EepromGetProtection(flash_config_t *config, uint8_t *protectStatus) +{ + if ((config == NULL) || (protectStatus == NULL)) + { + return kStatus_FLASH_InvalidArgument; + } + + if ((config->EEpromTotalSize == 0) || (config->EEpromTotalSize == FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED)) + { + return kStatus_FLASH_CommandNotSupported; + } + + *protectStatus = FTFx->FEPROT; + + return kStatus_FLASH_Success; +} +#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */ + +status_t FLASH_PflashSetPrefetchSpeculation(flash_prefetch_speculation_status_t *speculationStatus) +{ +#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM + { + FTFx_REG32_ACCESS_TYPE regBase; +#if defined(MCM) + regBase = (FTFx_REG32_ACCESS_TYPE)&MCM->PLACR; +#elif defined(MCM0) + regBase = (FTFx_REG32_ACCESS_TYPE)&MCM0->PLACR; +#endif + if (speculationStatus->instructionOption == kFLASH_prefetchSpeculationOptionDisable) + { + if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable) + { + return kStatus_FLASH_InvalidSpeculationOption; + } + else + { + *regBase |= MCM_PLACR_DFCS_MASK; + } + } + else + { + *regBase &= ~MCM_PLACR_DFCS_MASK; + if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable) + { + *regBase |= MCM_PLACR_EFDS_MASK; + } + else + { + *regBase &= ~MCM_PLACR_EFDS_MASK; + } + } + } +#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC + { + FTFx_REG32_ACCESS_TYPE regBase; + uint32_t b0dpeMask, b0ipeMask; +#if defined(FMC_PFB01CR_B0DPE_MASK) + regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR; + b0dpeMask = FMC_PFB01CR_B0DPE_MASK; + b0ipeMask = FMC_PFB01CR_B0IPE_MASK; +#elif defined(FMC_PFB0CR_B0DPE_MASK) + regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR; + b0dpeMask = FMC_PFB0CR_B0DPE_MASK; + b0ipeMask = FMC_PFB0CR_B0IPE_MASK; +#endif + if (speculationStatus->instructionOption == kFLASH_prefetchSpeculationOptionEnable) + { + *regBase |= b0ipeMask; + } + else + { + *regBase &= ~b0ipeMask; + } + if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable) + { + *regBase |= b0dpeMask; + } + else + { + *regBase &= ~b0dpeMask; + } + +/* Invalidate Prefetch Speculation Buffer */ +#if defined(FMC_PFB01CR_S_INV_MASK) + FMC->PFB01CR |= FMC_PFB01CR_S_INV_MASK; +#elif defined(FMC_PFB01CR_S_B_INV_MASK) + FMC->PFB01CR |= FMC_PFB01CR_S_B_INV_MASK; +#elif defined(FMC_PFB0CR_S_INV_MASK) + FMC->PFB0CR |= FMC_PFB0CR_S_INV_MASK; +#elif defined(FMC_PFB0CR_S_B_INV_MASK) + FMC->PFB0CR |= FMC_PFB0CR_S_B_INV_MASK; +#endif + } +#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM + { + FTFx_REG32_ACCESS_TYPE regBase; + uint32_t flashSpeculationMask, dataPrefetchMask; + regBase = (FTFx_REG32_ACCESS_TYPE)&MSCM->OCMDR[0]; + flashSpeculationMask = MSCM_OCMDR_OCMC1_DFCS_MASK; + dataPrefetchMask = MSCM_OCMDR_OCMC1_DFDS_MASK; + + if (speculationStatus->instructionOption == kFLASH_prefetchSpeculationOptionDisable) + { + if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable) + { + return kStatus_FLASH_InvalidSpeculationOption; + } + else + { + *regBase |= flashSpeculationMask; + } + } + else + { + *regBase &= ~flashSpeculationMask; + if (speculationStatus->dataOption == kFLASH_prefetchSpeculationOptionEnable) + { + *regBase &= ~dataPrefetchMask; + } + else + { + *regBase |= dataPrefetchMask; + } + } + } +#endif /* FSL_FEATURE_FTFx_MCM_FLASH_CACHE_CONTROLS */ + + return kStatus_FLASH_Success; +} + +status_t FLASH_PflashGetPrefetchSpeculation(flash_prefetch_speculation_status_t *speculationStatus) +{ + memset(speculationStatus, 0, sizeof(flash_prefetch_speculation_status_t)); + + /* Assuming that all speculation options are enabled. */ + speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionEnable; + speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionEnable; + +#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MCM + { + uint32_t value; +#if defined(MCM) + value = MCM->PLACR; +#elif defined(MCM0) + value = MCM0->PLACR; +#endif + if (value & MCM_PLACR_DFCS_MASK) + { + /* Speculation buffer is off. */ + speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionDisable; + speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable; + } + else + { + /* Speculation buffer is on for instruction. */ + if (!(value & MCM_PLACR_EFDS_MASK)) + { + /* Speculation buffer is off for data. */ + speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable; + } + } + } +#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC + { + uint32_t value; + uint32_t b0dpeMask, b0ipeMask; +#if defined(FMC_PFB01CR_B0DPE_MASK) + value = FMC->PFB01CR; + b0dpeMask = FMC_PFB01CR_B0DPE_MASK; + b0ipeMask = FMC_PFB01CR_B0IPE_MASK; +#elif defined(FMC_PFB0CR_B0DPE_MASK) + value = FMC->PFB0CR; + b0dpeMask = FMC_PFB0CR_B0DPE_MASK; + b0ipeMask = FMC_PFB0CR_B0IPE_MASK; +#endif + if (!(value & b0dpeMask)) + { + /* Do not prefetch in response to data references. */ + speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable; + } + if (!(value & b0ipeMask)) + { + /* Do not prefetch in response to instruction fetches. */ + speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionDisable; + } + } +#elif FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM + { + uint32_t value; + uint32_t flashSpeculationMask, dataPrefetchMask; + value = MSCM->OCMDR[0]; + flashSpeculationMask = MSCM_OCMDR_OCMC1_DFCS_MASK; + dataPrefetchMask = MSCM_OCMDR_OCMC1_DFDS_MASK; + + if (value & flashSpeculationMask) + { + /* Speculation buffer is off. */ + speculationStatus->instructionOption = kFLASH_prefetchSpeculationOptionDisable; + speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable; + } + else + { + /* Speculation buffer is on for instruction. */ + if (value & dataPrefetchMask) + { + /* Speculation buffer is off for data. */ + speculationStatus->dataOption = kFLASH_prefetchSpeculationOptionDisable; + } + } + } +#endif + + return kStatus_FLASH_Success; +} + +#if FLASH_DRIVER_IS_FLASH_RESIDENT +/*! + * @brief Copy PIC of flash_run_command() to RAM + */ +static void copy_flash_run_command(uint32_t *flashRunCommand) +{ + assert(sizeof(s_flashRunCommandFunctionCode) <= (kFLASH_ExecuteInRamFunctionMaxSizeInWords * 4)); + + /* Since the value of ARM function pointer is always odd, but the real start address + * of function memory should be even, that's why +1 operation exist. */ + memcpy((void *)flashRunCommand, (void *)s_flashRunCommandFunctionCode, sizeof(s_flashRunCommandFunctionCode)); + callFlashRunCommand = (void (*)(FTFx_REG8_ACCESS_TYPE ftfx_fstat))((uint32_t)flashRunCommand + 1); +} +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ + +/*! + * @brief Flash Command Sequence + * + * This function is used to perform the command write sequence to the flash. + * + * @param driver Pointer to storage for the driver runtime state. + * @return An error code or kStatus_FLASH_Success + */ +static status_t flash_command_sequence(flash_config_t *config) +{ + uint8_t registerValue; + +#if FLASH_DRIVER_IS_FLASH_RESIDENT + /* clear RDCOLERR & ACCERR & FPVIOL flag in flash status register */ + FTFx->FSTAT = FTFx_FSTAT_RDCOLERR_MASK | FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_FPVIOL_MASK; + + status_t returnCode = flash_check_execute_in_ram_function_info(config); + if (kStatus_FLASH_Success != returnCode) + { + return returnCode; + } + + /* We pass the ftfx_fstat address as a parameter to flash_run_comamnd() instead of using + * pre-processed MICRO sentences or operating global variable in flash_run_comamnd() + * to make sure that flash_run_command() will be compiled into position-independent code (PIC). */ + callFlashRunCommand((FTFx_REG8_ACCESS_TYPE)(&FTFx->FSTAT)); +#else + /* clear RDCOLERR & ACCERR & FPVIOL flag in flash status register */ + FTFx->FSTAT = FTFx_FSTAT_RDCOLERR_MASK | FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_FPVIOL_MASK; + + /* clear CCIF bit */ + FTFx->FSTAT = FTFx_FSTAT_CCIF_MASK; + + /* Check CCIF bit of the flash status register, wait till it is set. + * IP team indicates that this loop will always complete. */ + while (!(FTFx->FSTAT & FTFx_FSTAT_CCIF_MASK)) + { + } +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ + + /* Check error bits */ + /* Get flash status register value */ + registerValue = FTFx->FSTAT; + + /* checking access error */ + if (registerValue & FTFx_FSTAT_ACCERR_MASK) + { + return kStatus_FLASH_AccessError; + } + /* checking protection error */ + else if (registerValue & FTFx_FSTAT_FPVIOL_MASK) + { + return kStatus_FLASH_ProtectionViolation; + } + /* checking MGSTAT0 non-correctable error */ + else if (registerValue & FTFx_FSTAT_MGSTAT0_MASK) + { + return kStatus_FLASH_CommandFailure; + } + else + { + return kStatus_FLASH_Success; + } +} + +#if FLASH_DRIVER_IS_FLASH_RESIDENT +/*! + * @brief Copy PIC of flash_common_bit_operation() to RAM + * + */ +static void copy_flash_common_bit_operation(uint32_t *flashCommonBitOperation) +{ + assert(sizeof(s_flashCommonBitOperationFunctionCode) <= (kFLASH_ExecuteInRamFunctionMaxSizeInWords * 4)); + + /* Since the value of ARM function pointer is always odd, but the real start address + * of function memory should be even, that's why +1 operation exist. */ + memcpy((void *)flashCommonBitOperation, (void *)s_flashCommonBitOperationFunctionCode, + sizeof(s_flashCommonBitOperationFunctionCode)); + callFlashCommonBitOperation = (void (*)(FTFx_REG32_ACCESS_TYPE base, uint32_t bitMask, uint32_t bitShift, + uint32_t bitValue))((uint32_t)flashCommonBitOperation + 1); + /* Workround for some devices which doesn't need this function */ + callFlashCommonBitOperation((FTFx_REG32_ACCESS_TYPE)0, 0, 0, 0); +} +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ + +#if FLASH_CACHE_IS_CONTROLLED_BY_MCM +/*! @brief Performs the cache clear to the flash by MCM.*/ +void mcm_flash_cache_clear(flash_config_t *config) +{ + FTFx_REG32_ACCESS_TYPE regBase = (FTFx_REG32_ACCESS_TYPE)&MCM0_CACHE_REG; + +#if defined(MCM0) && defined(MCM1) + if (config->FlashCacheControllerIndex == (uint8_t)kFLASH_CacheControllerIndexForCore1) + { + regBase = (FTFx_REG32_ACCESS_TYPE)&MCM1_CACHE_REG; + } +#endif + +#if FLASH_DRIVER_IS_FLASH_RESIDENT + callFlashCommonBitOperation(regBase, MCM_CACHE_CLEAR_MASK, MCM_CACHE_CLEAR_SHIFT, 1U); +#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */ + *regBase |= MCM_CACHE_CLEAR_MASK; + + /* Memory barriers for good measure. + * All Cache, Branch predictor and TLB maintenance operations before this instruction complete */ + __ISB(); + __DSB(); +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ +} +#endif /* FLASH_CACHE_IS_CONTROLLED_BY_MCM */ + +#if FLASH_CACHE_IS_CONTROLLED_BY_FMC +/*! @brief Performs the cache clear to the flash by FMC.*/ +void fmc_flash_cache_clear(void) +{ +#if FLASH_DRIVER_IS_FLASH_RESIDENT + FTFx_REG32_ACCESS_TYPE regBase = (FTFx_REG32_ACCESS_TYPE)0; +#if defined(FMC_PFB01CR_CINV_WAY_MASK) + regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR; + callFlashCommonBitOperation(regBase, FMC_PFB01CR_CINV_WAY_MASK, FMC_PFB01CR_CINV_WAY_SHIFT, 0xFU); +#else + regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR; + callFlashCommonBitOperation(regBase, FMC_PFB0CR_CINV_WAY_MASK, FMC_PFB0CR_CINV_WAY_SHIFT, 0xFU); +#endif +#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */ +#if defined(FMC_PFB01CR_CINV_WAY_MASK) + FMC->PFB01CR = (FMC->PFB01CR & ~FMC_PFB01CR_CINV_WAY_MASK) | FMC_PFB01CR_CINV_WAY(~0); +#else + FMC->PFB0CR = (FMC->PFB0CR & ~FMC_PFB0CR_CINV_WAY_MASK) | FMC_PFB0CR_CINV_WAY(~0); +#endif + /* Memory barriers for good measure. + * All Cache, Branch predictor and TLB maintenance operations before this instruction complete */ + __ISB(); + __DSB(); +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ +} +#endif /* FLASH_CACHE_IS_CONTROLLED_BY_FMC */ + +#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM +/*! @brief Performs the prefetch speculation buffer clear to the flash by MSCM.*/ +void mscm_flash_prefetch_speculation_enable(bool enable) +{ + uint8_t setValue; + if (enable) + { + setValue = 0x0U; + } + else + { + setValue = 0x3U; + } + +/* The OCMDR[0] is always used to prefetch main Pflash*/ +/* For device with FlexNVM support, the OCMDR[1] is used to prefetch Dflash. + * For device with secondary flash support, the OCMDR[1] is used to prefetch secondary Pflash. */ +#if FLASH_DRIVER_IS_FLASH_RESIDENT + callFlashCommonBitOperation((FTFx_REG32_ACCESS_TYPE)&MSCM->OCMDR[0], MSCM_SPECULATION_DISABLE_MASK, + MSCM_SPECULATION_DISABLE_SHIFT, setValue); +#if FLASH_SSD_IS_FLEXNVM_ENABLED || BL_HAS_SECONDARY_INTERNAL_FLASH + callFlashCommonBitOperation((FTFx_REG32_ACCESS_TYPE)&MSCM->OCMDR[1], MSCM_SPECULATION_DISABLE_MASK, + MSCM_SPECULATION_DISABLE_SHIFT, setValue); +#endif +#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */ + MSCM->OCMDR[0] |= MSCM_SPECULATION_DISABLE(setValue); + + /* Memory barriers for good measure. + * All Cache, Branch predictor and TLB maintenance operations before this instruction complete */ + __ISB(); + __DSB(); +#if FLASH_SSD_IS_FLEXNVM_ENABLED || BL_HAS_SECONDARY_INTERNAL_FLASH + MSCM->OCMDR[1] |= MSCM_SPECULATION_DISABLE(setValue); + + /* Each cahce clear instaruction should be followed by below code*/ + __ISB(); + __DSB(); +#endif + +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ +} +#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM */ + +#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC +/*! @brief Performs the prefetch speculation buffer clear to the flash by FMC.*/ +void fmc_flash_prefetch_speculation_clear(void) +{ +#if FLASH_DRIVER_IS_FLASH_RESIDENT + FTFx_REG32_ACCESS_TYPE regBase = (FTFx_REG32_ACCESS_TYPE)0; +#if defined(FMC_PFB01CR_S_INV_MASK) + regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR; + callFlashCommonBitOperation(regBase, FMC_PFB01CR_S_INV_MASK, FMC_PFB01CR_S_INV_SHIFT, 1U); +#elif defined(FMC_PFB01CR_S_B_INV_MASK) + regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB01CR; + callFlashCommonBitOperation(regBase, FMC_PFB01CR_S_B_INV_MASK, FMC_PFB01CR_S_B_INV_SHIFT, 1U); +#elif defined(FMC_PFB0CR_S_INV_MASK) + regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR; + callFlashCommonBitOperation(regBase, FMC_PFB0CR_S_INV_MASK, FMC_PFB0CR_S_INV_SHIFT, 1U); +#elif defined(FMC_PFB0CR_S_B_INV_MASK) + regBase = (FTFx_REG32_ACCESS_TYPE)&FMC->PFB0CR; + callFlashCommonBitOperation(regBase, FMC_PFB0CR_S_B_INV_MASK, FMC_PFB0CR_S_B_INV_SHIFT, 1U); +#endif +#else /* !FLASH_DRIVER_IS_FLASH_RESIDENT */ +#if defined(FMC_PFB01CR_S_INV_MASK) + FMC->PFB01CR |= FMC_PFB01CR_S_INV_MASK; +#elif defined(FMC_PFB01CR_S_B_INV_MASK) + FMC->PFB01CR |= FMC_PFB01CR_S_B_INV_MASK; +#elif defined(FMC_PFB0CR_S_INV_MASK) + FMC->PFB0CR |= FMC_PFB0CR_S_INV_MASK; +#elif defined(FMC_PFB0CR_S_B_INV_MASK) + FMC->PFB0CR |= FMC_PFB0CR_S_B_INV_MASK; +#endif + /* Memory barriers for good measure. + * All Cache, Branch predictor and TLB maintenance operations before this instruction complete */ + __ISB(); + __DSB(); +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ +} +#endif /* FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC */ + +/*! + * @brief Flash Cache Clear + * + * This function is used to perform the cache and prefetch speculation clear to the flash. + */ +void flash_cache_clear(flash_config_t *config) +{ + flash_cache_clear_process(config, kFLASH_CacheClearProcessPost); +} + +/*! + * @brief Flash Cache Clear Process + * + * This function is used to perform the cache and prefetch speculation clear process to the flash. + */ +static void flash_cache_clear_process(flash_config_t *config, flash_cache_clear_process_t process) +{ +#if FLASH_DRIVER_IS_FLASH_RESIDENT + status_t returnCode = flash_check_execute_in_ram_function_info(config); + if (kStatus_FLASH_Success != returnCode) + { + return; + } +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ + + /* We pass the ftfx register address as a parameter to flash_common_bit_operation() instead of using + * pre-processed MACROs or a global variable in flash_common_bit_operation() + * to make sure that flash_common_bit_operation() will be compiled into position-independent code (PIC). */ + if (process == kFLASH_CacheClearProcessPost) + { +#if FLASH_CACHE_IS_CONTROLLED_BY_MCM + mcm_flash_cache_clear(config); +#endif +#if FLASH_CACHE_IS_CONTROLLED_BY_FMC + fmc_flash_cache_clear(); +#endif +#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM + mscm_flash_prefetch_speculation_enable(true); +#endif +#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_FMC + fmc_flash_prefetch_speculation_clear(); +#endif + } + if (process == kFLASH_CacheClearProcessPre) + { +#if FLASH_PREFETCH_SPECULATION_IS_CONTROLLED_BY_MSCM + mscm_flash_prefetch_speculation_enable(false); +#endif + } +} + +#if FLASH_DRIVER_IS_FLASH_RESIDENT +/*! @brief Check whether flash execute-in-ram functions are ready */ +static status_t flash_check_execute_in_ram_function_info(flash_config_t *config) +{ + flash_execute_in_ram_function_config_t *flashExecuteInRamFunctionInfo; + + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + flashExecuteInRamFunctionInfo = (flash_execute_in_ram_function_config_t *)config->flashExecuteInRamFunctionInfo; + + if ((config->flashExecuteInRamFunctionInfo) && + (kFLASH_ExecuteInRamFunctionTotalNum == flashExecuteInRamFunctionInfo->activeFunctionCount)) + { + return kStatus_FLASH_Success; + } + + return kStatus_FLASH_ExecuteInRamFunctionNotReady; +} +#endif /* FLASH_DRIVER_IS_FLASH_RESIDENT */ + +/*! @brief Validates the range and alignment of the given address range.*/ +static status_t flash_check_range(flash_config_t *config, + uint32_t startAddress, + uint32_t lengthInBytes, + uint32_t alignmentBaseline) +{ + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* Verify the start and length are alignmentBaseline aligned. */ + if ((startAddress & (alignmentBaseline - 1)) || (lengthInBytes & (alignmentBaseline - 1))) + { + return kStatus_FLASH_AlignmentError; + } + + /* check for valid range of the target addresses */ + if ( +#if FLASH_SSD_IS_FLEXNVM_ENABLED + ((startAddress >= config->DFlashBlockBase) && + ((startAddress + lengthInBytes) <= (config->DFlashBlockBase + config->DFlashTotalSize))) || +#endif + ((startAddress >= config->PFlashBlockBase) && + ((startAddress + lengthInBytes) <= (config->PFlashBlockBase + config->PFlashTotalSize)))) + { + return kStatus_FLASH_Success; + } + + return kStatus_FLASH_AddressError; +} + +/*! @brief Gets the right address, sector and block size of current flash type which is indicated by address.*/ +static status_t flash_get_matched_operation_info(flash_config_t *config, + uint32_t address, + flash_operation_config_t *info) +{ + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* Clean up info Structure*/ + memset(info, 0, sizeof(flash_operation_config_t)); + +#if FLASH_SSD_IS_FLEXNVM_ENABLED + if ((address >= config->DFlashBlockBase) && (address <= (config->DFlashBlockBase + config->DFlashTotalSize))) + { + /* When required by the command, address bit 23 selects between program flash memory + * (=0) and data flash memory (=1).*/ + info->convertedAddress = address - config->DFlashBlockBase + 0x800000U; + info->activeSectorSize = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_SECTOR_SIZE; + info->activeBlockSize = config->DFlashTotalSize / FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_COUNT; + + info->blockWriteUnitSize = FSL_FEATURE_FLASH_FLEX_NVM_BLOCK_WRITE_UNIT_SIZE; + info->sectorCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_SECTOR_CMD_ADDRESS_ALIGMENT; + info->sectionCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_SECTION_CMD_ADDRESS_ALIGMENT; + info->resourceCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_RESOURCE_CMD_ADDRESS_ALIGMENT; + info->checkCmdAddressAligment = FSL_FEATURE_FLASH_FLEX_NVM_CHECK_CMD_ADDRESS_ALIGMENT; + } + else +#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */ + { + info->convertedAddress = address - config->PFlashBlockBase; + info->activeSectorSize = config->PFlashSectorSize; + info->activeBlockSize = config->PFlashTotalSize / config->PFlashBlockCount; +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED + if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash) + { +#if FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER || FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER + /* When required by the command, address bit 23 selects between main flash memory + * (=0) and secondary flash memory (=1).*/ + info->convertedAddress += 0x800000U; +#endif + info->blockWriteUnitSize = FSL_FEATURE_FLASH_PFLASH_1_BLOCK_WRITE_UNIT_SIZE; + } + else +#endif /* FLASH_SSD_IS_SECONDARY_FLASH_ENABLED */ + { + info->blockWriteUnitSize = FSL_FEATURE_FLASH_PFLASH_BLOCK_WRITE_UNIT_SIZE; + } + + info->sectorCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_SECTOR_CMD_ADDRESS_ALIGMENT; + info->sectionCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_SECTION_CMD_ADDRESS_ALIGMENT; + info->resourceCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_RESOURCE_CMD_ADDRESS_ALIGMENT; + info->checkCmdAddressAligment = FSL_FEATURE_FLASH_PFLASH_CHECK_CMD_ADDRESS_ALIGMENT; + } + + return kStatus_FLASH_Success; +} + +/*! @brief Validates the given user key for flash erase APIs.*/ +static status_t flash_check_user_key(uint32_t key) +{ + /* Validate the user key */ + if (key != kFLASH_ApiEraseKey) + { + return kStatus_FLASH_EraseKeyError; + } + + return kStatus_FLASH_Success; +} + +#if FLASH_SSD_IS_FLEXNVM_ENABLED +/*! @brief Updates FlexNVM memory partition status according to data flash 0 IFR.*/ +static status_t flash_update_flexnvm_memory_partition_status(flash_config_t *config) +{ + struct + { + uint32_t reserved0; + uint8_t FlexNVMPartitionCode; + uint8_t EEPROMDataSetSize; + uint16_t reserved1; + } dataIFRReadOut; + status_t returnCode; + + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + +#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD + /* Get FlexNVM memory partition info from data flash IFR */ + returnCode = FLASH_ReadResource(config, DFLASH_IFR_READRESOURCE_START_ADDRESS, (uint32_t *)&dataIFRReadOut, + sizeof(dataIFRReadOut), kFLASH_ResourceOptionFlashIfr); + if (returnCode != kStatus_FLASH_Success) + { + return kStatus_FLASH_PartitionStatusUpdateFailure; + } +#else +#error "Cannot get FlexNVM memory partition info" +#endif + + /* Fill out partitioned EEPROM size */ + dataIFRReadOut.EEPROMDataSetSize &= 0x0FU; + switch (dataIFRReadOut.EEPROMDataSetSize) + { + case 0x00U: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0000; + break; + case 0x01U: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0001; + break; + case 0x02U: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0010; + break; + case 0x03U: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0011; + break; + case 0x04U: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0100; + break; + case 0x05U: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0101; + break; + case 0x06U: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0110; + break; + case 0x07U: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_0111; + break; + case 0x08U: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1000; + break; + case 0x09U: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1001; + break; + case 0x0AU: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1010; + break; + case 0x0BU: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1011; + break; + case 0x0CU: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1100; + break; + case 0x0DU: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1101; + break; + case 0x0EU: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1110; + break; + case 0x0FU: + config->EEpromTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_1111; + break; + default: + config->EEpromTotalSize = FLEX_NVM_EEPROM_SIZE_FOR_EEESIZE_RESERVED; + break; + } + + /* Fill out partitioned DFlash size */ + dataIFRReadOut.FlexNVMPartitionCode &= 0x0FU; + switch (dataIFRReadOut.FlexNVMPartitionCode) + { + case 0x00U: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0000 */ + break; + case 0x01U: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0001 */ + break; + case 0x02U: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0010 */ + break; + case 0x03U: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0011 */ + break; + case 0x04U: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0100 */ + break; + case 0x05U: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0101 */ + break; + case 0x06U: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0110 */ + break; + case 0x07U: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_0111 */ + break; + case 0x08U: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1000 */ + break; + case 0x09U: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1001 */ + break; + case 0x0AU: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1010 */ + break; + case 0x0BU: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1011 */ + break; + case 0x0CU: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1100 */ + break; + case 0x0DU: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1101 */ + break; + case 0x0EU: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1110 */ + break; + case 0x0FU: +#if (FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111 != 0xFFFFFFFF) + config->DFlashTotalSize = FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111; +#else + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; +#endif /* FSL_FEATURE_FLASH_FLEX_NVM_DFLASH_SIZE_FOR_DEPART_1111 */ + break; + default: + config->DFlashTotalSize = FLEX_NVM_DFLASH_SIZE_FOR_DEPART_RESERVED; + break; + } + + return kStatus_FLASH_Success; +} +#endif /* FLASH_SSD_IS_FLEXNVM_ENABLED */ + +#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD +/*! @brief Validates the range of the given resource address.*/ +static status_t flash_check_resource_range(uint32_t start, + uint32_t lengthInBytes, + uint32_t alignmentBaseline, + flash_read_resource_option_t option) +{ + status_t status; + uint32_t maxReadbleAddress; + + if ((start & (alignmentBaseline - 1)) || (lengthInBytes & (alignmentBaseline - 1))) + { + return kStatus_FLASH_AlignmentError; + } + + status = kStatus_FLASH_Success; + + maxReadbleAddress = start + lengthInBytes - 1; + if (option == kFLASH_ResourceOptionVersionId) + { + if ((start != kFLASH_ResourceRangeVersionIdStart) || + ((start + lengthInBytes - 1) != kFLASH_ResourceRangeVersionIdEnd)) + { + status = kStatus_FLASH_InvalidArgument; + } + } + else if (option == kFLASH_ResourceOptionFlashIfr) + { + if (maxReadbleAddress < kFLASH_ResourceRangePflashIfrSizeInBytes) + { + } +#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP + else if ((start >= kFLASH_ResourceRangePflashSwapIfrStart) && + (maxReadbleAddress <= kFLASH_ResourceRangePflashSwapIfrEnd)) + { + } +#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */ + else if ((start >= kFLASH_ResourceRangeDflashIfrStart) && + (maxReadbleAddress <= kFLASH_ResourceRangeDflashIfrEnd)) + { + } + else + { + status = kStatus_FLASH_InvalidArgument; + } + } + else + { + status = kStatus_FLASH_InvalidArgument; + } + + return status; +} +#endif /* FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD */ + +#if defined(FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD) && FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD +/*! @brief Validates the gived swap control option.*/ +static status_t flash_check_swap_control_option(flash_swap_control_option_t option) +{ + if ((option == kFLASH_SwapControlOptionIntializeSystem) || (option == kFLASH_SwapControlOptionSetInUpdateState) || + (option == kFLASH_SwapControlOptionSetInCompleteState) || (option == kFLASH_SwapControlOptionReportStatus) || + (option == kFLASH_SwapControlOptionDisableSystem)) + { + return kStatus_FLASH_Success; + } + + return kStatus_FLASH_InvalidArgument; +} +#endif /* FSL_FEATURE_FLASH_HAS_SWAP_CONTROL_CMD */ + +#if defined(FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP) && FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP +/*! @brief Validates the gived address to see if it is equal to swap indicator address in pflash swap IFR.*/ +static status_t flash_validate_swap_indicator_address(flash_config_t *config, uint32_t address) +{ + flash_swap_ifr_field_data_t flashSwapIfrFieldData; + uint32_t swapIndicatorAddress; + + status_t returnCode; +#if defined(FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD) && FSL_FEATURE_FLASH_HAS_READ_RESOURCE_CMD + returnCode = + FLASH_ReadResource(config, kFLASH_ResourceRangePflashSwapIfrStart, flashSwapIfrFieldData.flashSwapIfrData, + sizeof(flashSwapIfrFieldData.flashSwapIfrData), kFLASH_ResourceOptionFlashIfr); + + if (returnCode != kStatus_FLASH_Success) + { + return returnCode; + } +#else + { + /* From RM, the actual info are stored in FCCOB6,7 */ + uint32_t returnValue[2]; + returnCode = FLASH_ReadOnce(config, kFLASH_RecordIndexSwapAddr, returnValue, 4); + if (returnCode != kStatus_FLASH_Success) + { + return returnCode; + } + flashSwapIfrFieldData.flashSwapIfrField.swapIndicatorAddress = (uint16_t)returnValue[0]; + returnCode = FLASH_ReadOnce(config, kFLASH_RecordIndexSwapEnable, returnValue, 4); + if (returnCode != kStatus_FLASH_Success) + { + return returnCode; + } + flashSwapIfrFieldData.flashSwapIfrField.swapEnableWord = (uint16_t)returnValue[0]; + returnCode = FLASH_ReadOnce(config, kFLASH_RecordIndexSwapDisable, returnValue, 4); + if (returnCode != kStatus_FLASH_Success) + { + return returnCode; + } + flashSwapIfrFieldData.flashSwapIfrField.swapDisableWord = (uint16_t)returnValue[0]; + } +#endif + + /* The high bits value of Swap Indicator Address is stored in Program Flash Swap IFR Field, + * the low severval bit value of Swap Indicator Address is always 1'b0 */ + swapIndicatorAddress = (uint32_t)flashSwapIfrFieldData.flashSwapIfrField.swapIndicatorAddress * + FSL_FEATURE_FLASH_PFLASH_SWAP_CONTROL_CMD_ADDRESS_ALIGMENT; + if (address != swapIndicatorAddress) + { + return kStatus_FLASH_SwapIndicatorAddressError; + } + + return returnCode; +} +#endif /* FSL_FEATURE_FLASH_HAS_PFLASH_BLOCK_SWAP */ + +#if defined(FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD) && FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD +/*! @brief Validates the gived flexram function option.*/ +static inline status_t flasn_check_flexram_function_option_range(flash_flexram_function_option_t option) +{ + if ((option != kFLASH_FlexramFunctionOptionAvailableAsRam) && + (option != kFLASH_FlexramFunctionOptionAvailableForEeprom)) + { + return kStatus_FLASH_InvalidArgument; + } + + return kStatus_FLASH_Success; +} +#endif /* FSL_FEATURE_FLASH_HAS_SET_FLEXRAM_FUNCTION_CMD */ + +/*! @brief Gets the flash protection information (region size, region count).*/ +static status_t flash_get_protection_info(flash_config_t *config, flash_protection_config_t *info) +{ + uint32_t pflashTotalSize; + + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* Clean up info Structure*/ + memset(info, 0, sizeof(flash_protection_config_t)); + +/* Note: KW40 has a secondary flash, but it doesn't have independent protection register*/ +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && (!FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER) + pflashTotalSize = FSL_FEATURE_FLASH_PFLASH_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_BLOCK_SIZE + + FSL_FEATURE_FLASH_PFLASH_1_BLOCK_COUNT * FSL_FEATURE_FLASH_PFLASH_1_BLOCK_SIZE; + info->regionBase = FSL_FEATURE_FLASH_PFLASH_START_ADDRESS; +#else + pflashTotalSize = config->PFlashTotalSize; + info->regionBase = config->PFlashBlockBase; +#endif + +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_PROTECTION_REGISTER + if (config->FlashMemoryIndex == (uint8_t)kFLASH_MemoryIndexSecondaryFlash) + { + info->regionCount = FSL_FEATURE_FLASH_PFLASH_1_PROTECTION_REGION_COUNT; + } + else +#endif + { + info->regionCount = FSL_FEATURE_FLASH_PFLASH_PROTECTION_REGION_COUNT; + } + + /* Calculate the size of the flash protection region + * If the flash density is > 32KB, then protection region is 1/32 of total flash density + * Else if flash density is < 32KB, then flash protection region is set to 1KB */ + if (pflashTotalSize > info->regionCount * 1024) + { + info->regionSize = (pflashTotalSize) / info->regionCount; + } + else + { + info->regionSize = 1024; + } + + return kStatus_FLASH_Success; +} + +#if defined(FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL) && FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL +/*! @brief Gets the flash Execute-Only access information (Segment size, Segment count).*/ +static status_t flash_get_access_info(flash_config_t *config, flash_access_config_t *info) +{ + if (config == NULL) + { + return kStatus_FLASH_InvalidArgument; + } + + /* Clean up info Structure*/ + memset(info, 0, sizeof(flash_access_config_t)); + +/* Note: KW40 has a secondary flash, but it doesn't have independent access register*/ +#if FLASH_SSD_IS_SECONDARY_FLASH_ENABLED && (!FLASH_SSD_SECONDARY_FLASH_HAS_ITS_OWN_ACCESS_REGISTER) + info->SegmentBase = FSL_FEATURE_FLASH_PFLASH_START_ADDRESS; +#else + info->SegmentBase = config->PFlashBlockBase; +#endif + info->SegmentSize = config->PFlashAccessSegmentSize; + info->SegmentCount = config->PFlashAccessSegmentCount; + + return kStatus_FLASH_Success; +} +#endif /* FSL_FEATURE_FLASH_HAS_ACCESS_CONTROL */ -- cgit v1.2.3